Continuity and Analyticity for the Generalized Benjamin–Ono Equation

This work mainly focuses on the continuity and analyticity for the generalized Benjamin–Ono (g-BO) equation. From the local well-posedness results for g-BO equation, we know that its solutions depend continuously on their initial data. In the present paper, we further show that such dependence is no...

Full description

Bibliographic Details
Main Authors: Xiaolin Pan, Bin Wang, Rong Chen
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/12/2435
_version_ 1797500284560211968
author Xiaolin Pan
Bin Wang
Rong Chen
author_facet Xiaolin Pan
Bin Wang
Rong Chen
author_sort Xiaolin Pan
collection DOAJ
description This work mainly focuses on the continuity and analyticity for the generalized Benjamin–Ono (g-BO) equation. From the local well-posedness results for g-BO equation, we know that its solutions depend continuously on their initial data. In the present paper, we further show that such dependence is not uniformly continuous in Sobolev spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mi>s</mi></msup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>. We also provide more information about the stability of the data-solution map, i.e., the solution map for g-BO equation is Hölder continuous in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mi>r</mi></msup></semantics></math></inline-formula>-topology for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>s</mi></mrow></semantics></math></inline-formula> with exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> depending on <i>s</i> and <i>r</i>. Finally, applying the generalized Ovsyannikov type theorem and the basic properties of Sobolev–Gevrey spaces, we prove the Gevrey regularity and analyticity for the g-BO equation. In addition, by the symmetry of the spatial variable, we obtain a lower bound of the lifespan and the continuity of the data-to-solution map.
first_indexed 2024-03-10T03:59:42Z
format Article
id doaj.art-275b5587839144b1894d1f3b43bd651b
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T03:59:42Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-275b5587839144b1894d1f3b43bd651b2023-11-23T10:47:12ZengMDPI AGSymmetry2073-89942021-12-011312243510.3390/sym13122435Continuity and Analyticity for the Generalized Benjamin–Ono EquationXiaolin Pan0Bin Wang1Rong Chen2College of Mathematics Science, Chongqing Normal University, Chongqing 401331, ChinaChongqing Fengmingshan High School, Chongqing 401331, ChinaPersonnel Department, Chongqing Normal University, Chongqing 401331, ChinaThis work mainly focuses on the continuity and analyticity for the generalized Benjamin–Ono (g-BO) equation. From the local well-posedness results for g-BO equation, we know that its solutions depend continuously on their initial data. In the present paper, we further show that such dependence is not uniformly continuous in Sobolev spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mi>s</mi></msup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>. We also provide more information about the stability of the data-solution map, i.e., the solution map for g-BO equation is Hölder continuous in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mi>r</mi></msup></semantics></math></inline-formula>-topology for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>s</mi></mrow></semantics></math></inline-formula> with exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> depending on <i>s</i> and <i>r</i>. Finally, applying the generalized Ovsyannikov type theorem and the basic properties of Sobolev–Gevrey spaces, we prove the Gevrey regularity and analyticity for the g-BO equation. In addition, by the symmetry of the spatial variable, we obtain a lower bound of the lifespan and the continuity of the data-to-solution map.https://www.mdpi.com/2073-8994/13/12/2435generalized Benjamin–Ono equationnon-uniform dependenceHölder continuoussymmetryanalyticityGevrey regularity
spellingShingle Xiaolin Pan
Bin Wang
Rong Chen
Continuity and Analyticity for the Generalized Benjamin–Ono Equation
Symmetry
generalized Benjamin–Ono equation
non-uniform dependence
Hölder continuous
symmetry
analyticity
Gevrey regularity
title Continuity and Analyticity for the Generalized Benjamin–Ono Equation
title_full Continuity and Analyticity for the Generalized Benjamin–Ono Equation
title_fullStr Continuity and Analyticity for the Generalized Benjamin–Ono Equation
title_full_unstemmed Continuity and Analyticity for the Generalized Benjamin–Ono Equation
title_short Continuity and Analyticity for the Generalized Benjamin–Ono Equation
title_sort continuity and analyticity for the generalized benjamin ono equation
topic generalized Benjamin–Ono equation
non-uniform dependence
Hölder continuous
symmetry
analyticity
Gevrey regularity
url https://www.mdpi.com/2073-8994/13/12/2435
work_keys_str_mv AT xiaolinpan continuityandanalyticityforthegeneralizedbenjaminonoequation
AT binwang continuityandanalyticityforthegeneralizedbenjaminonoequation
AT rongchen continuityandanalyticityforthegeneralizedbenjaminonoequation