Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian

We consider a nonlinear eigenvalue problem driven by the Dirichlet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mn>2</mn>&l...

Full description

Bibliographic Details
Main Authors: Yunru Bai, Leszek Gasiński, Nikolaos S. Papageorgiou
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/2/58
_version_ 1797482718553964544
author Yunru Bai
Leszek Gasiński
Nikolaos S. Papageorgiou
author_facet Yunru Bai
Leszek Gasiński
Nikolaos S. Papageorgiou
author_sort Yunru Bai
collection DOAJ
description We consider a nonlinear eigenvalue problem driven by the Dirichlet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian. The parametric reaction is a Carathéodory function which exhibits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-sublinear growth as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></semantics></math></inline-formula>. Using variational tools and truncation and comparison techniques, we prove a bifurcation-type theorem describing the “spectrum” as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> varies. We also prove the existence of a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be extended to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-equations (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≠</mo><mn>2</mn></mrow></semantics></math></inline-formula>).
first_indexed 2024-03-09T22:36:29Z
format Article
id doaj.art-2765b770a8ef48eab0b233c5eb0b6e6e
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T22:36:29Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-2765b770a8ef48eab0b233c5eb0b6e6e2023-11-23T18:47:00ZengMDPI AGAxioms2075-16802022-01-011125810.3390/axioms11020058Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-LaplacianYunru Bai0Leszek Gasiński1Nikolaos S. Papageorgiou2School of Science, Guangxi University of Science and Technology, Liuzhou 545006, ChinaDepartment of Mathematics, Pedagogical University of Cracow, Podchorazych 2, 30-084 Cracow, PolandDepartment of Mathematics, National Technical University, Zografou Campus, 15780 Athens, GreeceWe consider a nonlinear eigenvalue problem driven by the Dirichlet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian. The parametric reaction is a Carathéodory function which exhibits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-sublinear growth as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></semantics></math></inline-formula>. Using variational tools and truncation and comparison techniques, we prove a bifurcation-type theorem describing the “spectrum” as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> varies. We also prove the existence of a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be extended to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-equations (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≠</mo><mn>2</mn></mrow></semantics></math></inline-formula>).https://www.mdpi.com/2075-1680/11/2/58(<i>p</i>,2) and (<i>p</i>,<i>q</i>)-Laplaciansnonlinear regularitypositive solutionsstrong comparison principlesublinear reactionbifurcation-type results
spellingShingle Yunru Bai
Leszek Gasiński
Nikolaos S. Papageorgiou
Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian
Axioms
(<i>p</i>,2) and (<i>p</i>,<i>q</i>)-Laplacians
nonlinear regularity
positive solutions
strong comparison principle
sublinear reaction
bifurcation-type results
title Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian
title_full Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian
title_fullStr Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian
title_full_unstemmed Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian
title_short Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian
title_sort nonlinear eigenvalue problems for the dirichlet i p i 2 laplacian
topic (<i>p</i>,2) and (<i>p</i>,<i>q</i>)-Laplacians
nonlinear regularity
positive solutions
strong comparison principle
sublinear reaction
bifurcation-type results
url https://www.mdpi.com/2075-1680/11/2/58
work_keys_str_mv AT yunrubai nonlineareigenvalueproblemsforthedirichletipi2laplacian
AT leszekgasinski nonlineareigenvalueproblemsforthedirichletipi2laplacian
AT nikolaosspapageorgiou nonlineareigenvalueproblemsforthedirichletipi2laplacian