Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian
We consider a nonlinear eigenvalue problem driven by the Dirichlet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mn>2</mn>&l...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-01-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/11/2/58 |
_version_ | 1797482718553964544 |
---|---|
author | Yunru Bai Leszek Gasiński Nikolaos S. Papageorgiou |
author_facet | Yunru Bai Leszek Gasiński Nikolaos S. Papageorgiou |
author_sort | Yunru Bai |
collection | DOAJ |
description | We consider a nonlinear eigenvalue problem driven by the Dirichlet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian. The parametric reaction is a Carathéodory function which exhibits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-sublinear growth as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></semantics></math></inline-formula>. Using variational tools and truncation and comparison techniques, we prove a bifurcation-type theorem describing the “spectrum” as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> varies. We also prove the existence of a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be extended to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-equations (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≠</mo><mn>2</mn></mrow></semantics></math></inline-formula>). |
first_indexed | 2024-03-09T22:36:29Z |
format | Article |
id | doaj.art-2765b770a8ef48eab0b233c5eb0b6e6e |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-09T22:36:29Z |
publishDate | 2022-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-2765b770a8ef48eab0b233c5eb0b6e6e2023-11-23T18:47:00ZengMDPI AGAxioms2075-16802022-01-011125810.3390/axioms11020058Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-LaplacianYunru Bai0Leszek Gasiński1Nikolaos S. Papageorgiou2School of Science, Guangxi University of Science and Technology, Liuzhou 545006, ChinaDepartment of Mathematics, Pedagogical University of Cracow, Podchorazych 2, 30-084 Cracow, PolandDepartment of Mathematics, National Technical University, Zografou Campus, 15780 Athens, GreeceWe consider a nonlinear eigenvalue problem driven by the Dirichlet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian. The parametric reaction is a Carathéodory function which exhibits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-sublinear growth as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></semantics></math></inline-formula>. Using variational tools and truncation and comparison techniques, we prove a bifurcation-type theorem describing the “spectrum” as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> varies. We also prove the existence of a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be extended to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-equations (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≠</mo><mn>2</mn></mrow></semantics></math></inline-formula>).https://www.mdpi.com/2075-1680/11/2/58(<i>p</i>,2) and (<i>p</i>,<i>q</i>)-Laplaciansnonlinear regularitypositive solutionsstrong comparison principlesublinear reactionbifurcation-type results |
spellingShingle | Yunru Bai Leszek Gasiński Nikolaos S. Papageorgiou Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian Axioms (<i>p</i>,2) and (<i>p</i>,<i>q</i>)-Laplacians nonlinear regularity positive solutions strong comparison principle sublinear reaction bifurcation-type results |
title | Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian |
title_full | Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian |
title_fullStr | Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian |
title_full_unstemmed | Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian |
title_short | Nonlinear Eigenvalue Problems for the Dirichlet (<i>p</i>,2)-Laplacian |
title_sort | nonlinear eigenvalue problems for the dirichlet i p i 2 laplacian |
topic | (<i>p</i>,2) and (<i>p</i>,<i>q</i>)-Laplacians nonlinear regularity positive solutions strong comparison principle sublinear reaction bifurcation-type results |
url | https://www.mdpi.com/2075-1680/11/2/58 |
work_keys_str_mv | AT yunrubai nonlineareigenvalueproblemsforthedirichletipi2laplacian AT leszekgasinski nonlineareigenvalueproblemsforthedirichletipi2laplacian AT nikolaosspapageorgiou nonlineareigenvalueproblemsforthedirichletipi2laplacian |