Convex Polygon Triangulation Based on Symmetry

A polygon with <i>n</i> nodes can be divided into two subpolygons by an internal diagonal through node <i>n</i>. Splitting the polygon along diagonal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantic...

Full description

Bibliographic Details
Main Authors: Predrag V. Krtolica, Predrag S. Stanimirović, Sead H. Mašović, Islam A. Elshaarawy, Alena Stupina
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/8/1526
Description
Summary:A polygon with <i>n</i> nodes can be divided into two subpolygons by an internal diagonal through node <i>n</i>. Splitting the polygon along diagonal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula> and diagonal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mi>n</mi><mo>−</mo><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>}</mo></mrow></semantics></math></inline-formula> results in mirror images. Obviously, there are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> pairs of these reflectively symmetrical images. The influence of the observed symmetry on polygon triangulation is studied. The central result of this research is the construction of an efficient algorithm used for generating convex polygon triangulations in minimal time and without generating repeat triangulations. The proposed algorithm uses the diagonal values of the Catalan triangle to avoid duplicate triangulations with negligible computational costs and provides significant speedups compared to known methods.
ISSN:2073-8994