Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning

Pump–probe spectroscopy is a gold standard technique to investigate ultrafast electronic dynamics of material systems. Pulsed laser sources employed to pump and probe samples feature typically high peak power, which may give rise to coherent artifacts under a wide range of experimental conditions. A...

Full description

Bibliographic Details
Main Authors: A. Bresci, M. Guizzardi, C. M. Valensise, F. Marangi, F. Scotognella, G. Cerullo, D. Polli
Format: Article
Language:English
Published: AIP Publishing LLC 2021-07-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/5.0057404
_version_ 1818601473093664768
author A. Bresci
M. Guizzardi
C. M. Valensise
F. Marangi
F. Scotognella
G. Cerullo
D. Polli
author_facet A. Bresci
M. Guizzardi
C. M. Valensise
F. Marangi
F. Scotognella
G. Cerullo
D. Polli
author_sort A. Bresci
collection DOAJ
description Pump–probe spectroscopy is a gold standard technique to investigate ultrafast electronic dynamics of material systems. Pulsed laser sources employed to pump and probe samples feature typically high peak power, which may give rise to coherent artifacts under a wide range of experimental conditions. Among those, the Cross-Phase Modulation (XPM) artifact has gathered particular attention as it produces particularly high signal distortions, in some cases hiding a relevant portion of the dynamics of interest. Here, we present a novel approach for the removal of XPM coherent artifacts in ultrafast pump–probe spectroscopy, based on deep learning. We developed XPMnet, a convolutional neural network able to reconstruct electronic relaxation dynamics otherwise embedded in artifact distortions, thus enabling the retrieval of fundamental information to characterize the material system under investigation. We validated XPMnet on Indium Tin Oxide (ITO), a heavily doped semiconductor displaying a plasmon resonance in the near-infrared, which is a key material for the development of infrared plasmonic devices. Pump–probe measurements of ITO show strong XPM artifacts that overwhelm the electronic cooling dynamics of interest due to the low optical density of the material at near-infrared photon energies. XPMnet retrieved ITO electronic dynamics in excellent agreement with expected outcomes in terms of material-specific time constants. This artificial intelligence method constitutes a powerful solution for XPM artifact removal, providing high accuracy and short execution time. We believe that this model could be integrated in real time in pump–probe setups to increase the amount of information one can derive from ultrafast spectroscopy measurements.
first_indexed 2024-12-16T12:51:56Z
format Article
id doaj.art-2772d8726a0c4aabab07ec3e79700f7f
institution Directory Open Access Journal
issn 2378-0967
language English
last_indexed 2024-12-16T12:51:56Z
publishDate 2021-07-01
publisher AIP Publishing LLC
record_format Article
series APL Photonics
spelling doaj.art-2772d8726a0c4aabab07ec3e79700f7f2022-12-21T22:31:07ZengAIP Publishing LLCAPL Photonics2378-09672021-07-0167076104076104-910.1063/5.0057404Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learningA. Bresci0M. Guizzardi1C. M. Valensise2F. Marangi3F. Scotognella4G. Cerullo5D. Polli6Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, ItalyDepartment of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, ItalyDepartment of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, ItalyDepartment of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, ItalyDepartment of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, ItalyDepartment of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, ItalyDepartment of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, ItalyPump–probe spectroscopy is a gold standard technique to investigate ultrafast electronic dynamics of material systems. Pulsed laser sources employed to pump and probe samples feature typically high peak power, which may give rise to coherent artifacts under a wide range of experimental conditions. Among those, the Cross-Phase Modulation (XPM) artifact has gathered particular attention as it produces particularly high signal distortions, in some cases hiding a relevant portion of the dynamics of interest. Here, we present a novel approach for the removal of XPM coherent artifacts in ultrafast pump–probe spectroscopy, based on deep learning. We developed XPMnet, a convolutional neural network able to reconstruct electronic relaxation dynamics otherwise embedded in artifact distortions, thus enabling the retrieval of fundamental information to characterize the material system under investigation. We validated XPMnet on Indium Tin Oxide (ITO), a heavily doped semiconductor displaying a plasmon resonance in the near-infrared, which is a key material for the development of infrared plasmonic devices. Pump–probe measurements of ITO show strong XPM artifacts that overwhelm the electronic cooling dynamics of interest due to the low optical density of the material at near-infrared photon energies. XPMnet retrieved ITO electronic dynamics in excellent agreement with expected outcomes in terms of material-specific time constants. This artificial intelligence method constitutes a powerful solution for XPM artifact removal, providing high accuracy and short execution time. We believe that this model could be integrated in real time in pump–probe setups to increase the amount of information one can derive from ultrafast spectroscopy measurements.http://dx.doi.org/10.1063/5.0057404
spellingShingle A. Bresci
M. Guizzardi
C. M. Valensise
F. Marangi
F. Scotognella
G. Cerullo
D. Polli
Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning
APL Photonics
title Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning
title_full Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning
title_fullStr Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning
title_full_unstemmed Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning
title_short Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning
title_sort removal of cross phase modulation artifacts in ultrafast pump probe dynamics by deep learning
url http://dx.doi.org/10.1063/5.0057404
work_keys_str_mv AT abresci removalofcrossphasemodulationartifactsinultrafastpumpprobedynamicsbydeeplearning
AT mguizzardi removalofcrossphasemodulationartifactsinultrafastpumpprobedynamicsbydeeplearning
AT cmvalensise removalofcrossphasemodulationartifactsinultrafastpumpprobedynamicsbydeeplearning
AT fmarangi removalofcrossphasemodulationartifactsinultrafastpumpprobedynamicsbydeeplearning
AT fscotognella removalofcrossphasemodulationartifactsinultrafastpumpprobedynamicsbydeeplearning
AT gcerullo removalofcrossphasemodulationartifactsinultrafastpumpprobedynamicsbydeeplearning
AT dpolli removalofcrossphasemodulationartifactsinultrafastpumpprobedynamicsbydeeplearning