A Way to Construct Commutative Hyperstructures

This article aims to create commutative hyperstructures, starting with a non-commutative group. Therefore, we consider the starting group to be the dihedral group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><ms...

Full description

Bibliographic Details
Main Author: Andromeda Sonea
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Computer Sciences & Mathematics Forum
Subjects:
Online Access:https://www.mdpi.com/2813-0324/7/1/22
_version_ 1827575103198593024
author Andromeda Sonea
author_facet Andromeda Sonea
author_sort Andromeda Sonea
collection DOAJ
description This article aims to create commutative hyperstructures, starting with a non-commutative group. Therefore, we consider the starting group to be the dihedral group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mi>n</mi></msub></semantics></math></inline-formula>, where <i>n</i> is a natural number, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, and we determine the HX groups associated with the dihedral group. For a fixed number <i>n</i>, we note <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">G</mi><mi>n</mi></msub><mo>=</mo><mfenced separators="" open="{" close="}"><msubsup><mi mathvariant="script">G</mi><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow><msub><mi>p</mi><mn>1</mn></msub></msubsup><mspace width="4.pt"></mspace><mi>H</mi><mi>X</mi><mo>−</mo><mrow><mi>groups</mi><mo>,</mo></mrow><mspace width="4.pt"></mspace><mi>for</mi><mspace width="4.pt"></mspace><mi>any</mi><mspace width="4.pt"></mspace><msub><mi>p</mi><mn>1</mn></msub><mo>,</mo><mspace width="4.pt"></mspace><msub><mi>p</mi><mn>2</mn></msub><mo>∈</mo><msup><mi mathvariant="double-struck">N</mi><mo>*</mo></msup><mspace width="4.pt"></mspace><mi>such</mi><mspace width="4.pt"></mspace><mi>that</mi><mspace width="4.pt"></mspace><mi>n</mi><mo>=</mo><msub><mi>p</mi><mn>1</mn></msub><msub><mi>p</mi><mn>2</mn></msub></mfenced></mrow></semantics></math></inline-formula> as the set of all HX groups. This paper analyses this new structure’s properties for particular cases when the dihedral group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mn>4</mn></msub></semantics></math></inline-formula> is the support group.
first_indexed 2024-03-08T20:52:29Z
format Article
id doaj.art-2779b04cac0c439585e899d253685387
institution Directory Open Access Journal
issn 2813-0324
language English
last_indexed 2024-03-08T20:52:29Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Computer Sciences & Mathematics Forum
spelling doaj.art-2779b04cac0c439585e899d2536853872023-12-22T14:02:06ZengMDPI AGComputer Sciences & Mathematics Forum2813-03242023-04-01712210.3390/IOCMA2023-14385A Way to Construct Commutative HyperstructuresAndromeda Sonea0Department of Sciences, Faculty of Horticulture, Iasi University of Life Sciences, 700490 Iasi, RomaniaThis article aims to create commutative hyperstructures, starting with a non-commutative group. Therefore, we consider the starting group to be the dihedral group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mi>n</mi></msub></semantics></math></inline-formula>, where <i>n</i> is a natural number, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, and we determine the HX groups associated with the dihedral group. For a fixed number <i>n</i>, we note <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">G</mi><mi>n</mi></msub><mo>=</mo><mfenced separators="" open="{" close="}"><msubsup><mi mathvariant="script">G</mi><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow><msub><mi>p</mi><mn>1</mn></msub></msubsup><mspace width="4.pt"></mspace><mi>H</mi><mi>X</mi><mo>−</mo><mrow><mi>groups</mi><mo>,</mo></mrow><mspace width="4.pt"></mspace><mi>for</mi><mspace width="4.pt"></mspace><mi>any</mi><mspace width="4.pt"></mspace><msub><mi>p</mi><mn>1</mn></msub><mo>,</mo><mspace width="4.pt"></mspace><msub><mi>p</mi><mn>2</mn></msub><mo>∈</mo><msup><mi mathvariant="double-struck">N</mi><mo>*</mo></msup><mspace width="4.pt"></mspace><mi>such</mi><mspace width="4.pt"></mspace><mi>that</mi><mspace width="4.pt"></mspace><mi>n</mi><mo>=</mo><msub><mi>p</mi><mn>1</mn></msub><msub><mi>p</mi><mn>2</mn></msub></mfenced></mrow></semantics></math></inline-formula> as the set of all HX groups. This paper analyses this new structure’s properties for particular cases when the dihedral group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mn>4</mn></msub></semantics></math></inline-formula> is the support group.https://www.mdpi.com/2813-0324/7/1/22HX-groupsdihedral groupcommutativityhyperstructures
spellingShingle Andromeda Sonea
A Way to Construct Commutative Hyperstructures
Computer Sciences & Mathematics Forum
HX-groups
dihedral group
commutativity
hyperstructures
title A Way to Construct Commutative Hyperstructures
title_full A Way to Construct Commutative Hyperstructures
title_fullStr A Way to Construct Commutative Hyperstructures
title_full_unstemmed A Way to Construct Commutative Hyperstructures
title_short A Way to Construct Commutative Hyperstructures
title_sort way to construct commutative hyperstructures
topic HX-groups
dihedral group
commutativity
hyperstructures
url https://www.mdpi.com/2813-0324/7/1/22
work_keys_str_mv AT andromedasonea awaytoconstructcommutativehyperstructures
AT andromedasonea waytoconstructcommutativehyperstructures