Entropy: The Markov Ordering Approach

The focus of this article is on entropy and Markov processes. We study the properties of functionals which are invariant with respect to monotonic transformations and analyze two invariant “additivity” properties: (i) existence of a monotonic transformation which makes the functional additive with r...

Full description

Bibliographic Details
Main Authors: Alexander N. Gorban, Pavel A. Gorban, George Judge
Format: Article
Language:English
Published: MDPI AG 2010-05-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/12/5/1145/
Description
Summary:The focus of this article is on entropy and Markov processes. We study the properties of functionals which are invariant with respect to monotonic transformations and analyze two invariant “additivity” properties: (i) existence of a monotonic transformation which makes the functional additive with respect to the joining of independent systems and (ii) existence of a monotonic transformation which makes the functional additive with respect to the partitioning of the space of states. All Lyapunov functionals for Markov chains which have properties (i) and (ii) are derived. We describe the most general ordering of the distribution space, with respect to which all continuous-time Markov processes are monotonic (the Markov order). The solution differs significantly from the ordering given by the inequality of entropy growth. For inference, this approach results in a convex compact set of conditionally “most random” distributions.
ISSN:1099-4300