NH<sub>2</sub>-Modified UiO-66: Structural Characteristics and Functional Properties

The development of new functional materials based on metal–organic frameworks (MOFs) for adsorption and catalytic applications is one of the promising trends of modern materials science. The Zr-based MOFs, specifically UiO-66, are considered as the supports for metallic catalysts for the 5-hydroxyme...

Full description

Bibliographic Details
Main Authors: Konstantin L. Timofeev, Sergei A. Kulinich, Tamara S. Kharlamova
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/9/3916
Description
Summary:The development of new functional materials based on metal–organic frameworks (MOFs) for adsorption and catalytic applications is one of the promising trends of modern materials science. The Zr-based MOFs, specifically UiO-66, are considered as the supports for metallic catalysts for the 5-hydroxymethylfurfural platform molecule reduction into valuable products. The present work focused on the effect of NH<sub>2</sub> modification of UiO-66 on its structure and functional properties. The samples were prepared by a solvothermal method. The structure of the obtained materials was studied by X-ray diffraction, IR spectroscopy, UV–visible spectroscopy, and low-temperature nitrogen adsorption. Basic properties were investigated by HCl and CH<sub>3</sub>COOH adsorption, and electrokinetic properties were studied by electrophoretic light scattering. UiO-66-NH<sub>2</sub> samples with different contents of aminoterephthalate linkers were successfully prepared. A gradual decrease in the specific surface area and the fraction of micropores with a diameter of ~0.9 nm was observed with an increase in the aminoterephthalate content. A proportional increase in the total number of basic sites in UiO-66-NH<sub>2</sub> samples was established with an increase in the aminoterephthalate content up to 75%. At the same time, a noticeable decrease in the total number of basic sites and an increase in their strength with higher aminoterephthalate content was observed.
ISSN:1420-3049