Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation

We consider the possibility of constructing a hierarchy of the complex extension of the Korteweg–de Vries equation (cKdV), which under the assumption that the function is real passes into the KdV hierarchy. A hierarchy is understood here as a family of nonlinear partial differential equations with a...

Full description

Bibliographic Details
Main Authors: Tatyana V. Redkina, Arthur R. Zakinyan, Robert G. Zakinyan, Olesya B. Surneva
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/4/371
_version_ 1797606406694633472
author Tatyana V. Redkina
Arthur R. Zakinyan
Robert G. Zakinyan
Olesya B. Surneva
author_facet Tatyana V. Redkina
Arthur R. Zakinyan
Robert G. Zakinyan
Olesya B. Surneva
author_sort Tatyana V. Redkina
collection DOAJ
description We consider the possibility of constructing a hierarchy of the complex extension of the Korteweg–de Vries equation (cKdV), which under the assumption that the function is real passes into the KdV hierarchy. A hierarchy is understood here as a family of nonlinear partial differential equations with a Lax pair with a common scattering operator. The cKdV hierarchy is obtained by examining the equation on the eigenvalues of the fourth-order Hermitian self-conjugate operator on the invariant transformations of the eigenvector-functions. It is proved that for an operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>H</mi><mo stretchy="false">^</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> to transform a solution of the equation on eigenvalues <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced><mrow><mover accent="true"><mi>M</mi><mo stretchy="false">^</mo></mover><mo>−</mo><mi>λ</mi><mi>E</mi></mrow></mfenced><mi>V</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> into a solution of the same equation, it is necessary and sufficient that the complex function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></semantics></math></inline-formula> of the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>M</mi><mo stretchy="false">^</mo></mover></semantics></math></inline-formula> satisfies special conditions that are the complexifications of the KdV hierarchy equations. The operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>H</mi><mo stretchy="false">^</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> are constructed as differential operators of order 2<i>n</i> + 1. We also construct a hierarchy of perturbed KdV equations (pKdV) with a special perturbation function, the dynamics of which is described by a linear equation. It is based on the system of operator equations obtained by Bogoyavlensky. Since the elements of the hierarchies are united by a common scattering operator, it remains unchanged in the derivation of the equations. The second differential operator of the Lax pair has increasing odd derivatives while retaining a skew-symmetric form. It is shown that when perturbation tends to zero, all hierarchy equations are converted to higher KdV equations. It is proved that the pKdV hierarchy equations are a necessary and sufficient condition for the solutions of the equation on eigenvalues to have invariant transformations.
first_indexed 2024-03-11T05:14:44Z
format Article
id doaj.art-2787feef046c49e8b5e49687715d4093
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T05:14:44Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-2787feef046c49e8b5e49687715d40932023-11-17T18:19:26ZengMDPI AGAxioms2075-16802023-04-0112437110.3390/axioms12040371Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and PerturbationTatyana V. Redkina0Arthur R. Zakinyan1Robert G. Zakinyan2Olesya B. Surneva3North-Caucasus Center for Mathematical Research, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, RussiaNorth-Caucasus Center for Mathematical Research, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, RussiaNorth-Caucasus Center for Mathematical Research, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, RussiaNorth-Caucasus Center for Mathematical Research, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, RussiaWe consider the possibility of constructing a hierarchy of the complex extension of the Korteweg–de Vries equation (cKdV), which under the assumption that the function is real passes into the KdV hierarchy. A hierarchy is understood here as a family of nonlinear partial differential equations with a Lax pair with a common scattering operator. The cKdV hierarchy is obtained by examining the equation on the eigenvalues of the fourth-order Hermitian self-conjugate operator on the invariant transformations of the eigenvector-functions. It is proved that for an operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>H</mi><mo stretchy="false">^</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> to transform a solution of the equation on eigenvalues <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced><mrow><mover accent="true"><mi>M</mi><mo stretchy="false">^</mo></mover><mo>−</mo><mi>λ</mi><mi>E</mi></mrow></mfenced><mi>V</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> into a solution of the same equation, it is necessary and sufficient that the complex function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></semantics></math></inline-formula> of the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>M</mi><mo stretchy="false">^</mo></mover></semantics></math></inline-formula> satisfies special conditions that are the complexifications of the KdV hierarchy equations. The operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>H</mi><mo stretchy="false">^</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> are constructed as differential operators of order 2<i>n</i> + 1. We also construct a hierarchy of perturbed KdV equations (pKdV) with a special perturbation function, the dynamics of which is described by a linear equation. It is based on the system of operator equations obtained by Bogoyavlensky. Since the elements of the hierarchies are united by a common scattering operator, it remains unchanged in the derivation of the equations. The second differential operator of the Lax pair has increasing odd derivatives while retaining a skew-symmetric form. It is shown that when perturbation tends to zero, all hierarchy equations are converted to higher KdV equations. It is proved that the pKdV hierarchy equations are a necessary and sufficient condition for the solutions of the equation on eigenvalues to have invariant transformations.https://www.mdpi.com/2075-1680/12/4/371Lax pairscomplexification of the Korteweg–de Vries equationKorteweg–de Vries hierarchiesintegrable partial differential equationsperturbations of the Korteweg–de Vries equation
spellingShingle Tatyana V. Redkina
Arthur R. Zakinyan
Robert G. Zakinyan
Olesya B. Surneva
Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
Axioms
Lax pairs
complexification of the Korteweg–de Vries equation
Korteweg–de Vries hierarchies
integrable partial differential equations
perturbations of the Korteweg–de Vries equation
title Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
title_full Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
title_fullStr Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
title_full_unstemmed Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
title_short Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
title_sort hierarchies of the korteweg de vries equation related to complex expansion and perturbation
topic Lax pairs
complexification of the Korteweg–de Vries equation
Korteweg–de Vries hierarchies
integrable partial differential equations
perturbations of the Korteweg–de Vries equation
url https://www.mdpi.com/2075-1680/12/4/371
work_keys_str_mv AT tatyanavredkina hierarchiesofthekortewegdevriesequationrelatedtocomplexexpansionandperturbation
AT arthurrzakinyan hierarchiesofthekortewegdevriesequationrelatedtocomplexexpansionandperturbation
AT robertgzakinyan hierarchiesofthekortewegdevriesequationrelatedtocomplexexpansionandperturbation
AT olesyabsurneva hierarchiesofthekortewegdevriesequationrelatedtocomplexexpansionandperturbation