The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm

Hepatitis C is an infectious disease which is caused by the Hepatitis C virus (HCV) and the virus primarily affects the liver. Based on the publicly available dataset used in this paper the idea is to develop a mathematical equation that could be used to detect HCV patients with high accuracy based...

Full description

Bibliographic Details
Main Authors: Nikola Anđelić, Ivan Lorencin, Sandi Baressi Šegota, Zlatan Car
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/1/574
_version_ 1797626165021638656
author Nikola Anđelić
Ivan Lorencin
Sandi Baressi Šegota
Zlatan Car
author_facet Nikola Anđelić
Ivan Lorencin
Sandi Baressi Šegota
Zlatan Car
author_sort Nikola Anđelić
collection DOAJ
description Hepatitis C is an infectious disease which is caused by the Hepatitis C virus (HCV) and the virus primarily affects the liver. Based on the publicly available dataset used in this paper the idea is to develop a mathematical equation that could be used to detect HCV patients with high accuracy based on the enzymes, proteins, and biomarker values contained in a patient’s blood sample using genetic programming symbolic classification (GPSC) algorithm. Not only that, but the idea was also to obtain a mathematical equation that could detect the progress of the disease i.e., Hepatitis C, Fibrosis, and Cirrhosis using the GPSC algorithm. Since the original dataset was imbalanced (a large number of healthy patients versus a small number of Hepatitis C/Fibrosis/Cirrhosis patients) the dataset was balanced using random oversampling, SMOTE, ADSYN, and Borderline SMOTE methods. The symbolic expressions (mathematical equations) were obtained using the GPSC algorithm using a rigorous process of 5-fold cross-validation with a random hyperparameter search method which had to be developed for this problem. To evaluate each symbolic expression generated with GPSC the mean and standard deviation values of accuracy (ACC), the area under the receiver operating characteristic curve (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>), precision, recall, and F1-score were obtained. In a simple binary case (healthy vs. Hepatitis C patients) the best case was achieved with a dataset balanced with the Borderline SMOTE method. The results are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>A</mi><mi>C</mi><mi>C</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>C</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>U</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.99</mn><mo>±</mo><mn>5.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.99</mn><mo>±</mo><mn>5.4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.998</mn><mo>±</mo><mn>1.3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.98</mn><mo>±</mo><mn>1.19</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.99</mn><mo>±</mo><mn>5.39</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. For the multiclass problem, OneVsRestClassifer was used in combination with GPSC 5-fold cross-validation and random hyperparameter search, and the best case was achieved with a dataset balanced with the Borderline SMOTE method. To evaluate symbolic expressions obtained in this case previous evaluation metric methods were used however for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></semantics></math></inline-formula> the macro values were computed since this method calculates metrics for each label, and find their unweighted mean value. In multiclass case the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>A</mi><mi>C</mi><mi>C</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>C</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>U</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.934</mn><mo>±</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.987</mn><mo>±</mo><mn>1.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.942</mn><mo>±</mo><mn>6.9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.934</mn><mo>±</mo><mn>7.84</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.932</mn><mo>±</mo><mn>8.4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. For the best binary and multi-class cases, the symbolic expressions are shown and evaluated on the original dataset.
first_indexed 2024-03-11T10:06:37Z
format Article
id doaj.art-278a66e494d14f7e820a91c31c88e6d5
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-11T10:06:37Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-278a66e494d14f7e820a91c31c88e6d52023-11-16T14:58:55ZengMDPI AGApplied Sciences2076-34172022-12-0113157410.3390/app13010574The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification AlgorithmNikola Anđelić0Ivan Lorencin1Sandi Baressi Šegota2Zlatan Car3Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaFaculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaFaculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaFaculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaHepatitis C is an infectious disease which is caused by the Hepatitis C virus (HCV) and the virus primarily affects the liver. Based on the publicly available dataset used in this paper the idea is to develop a mathematical equation that could be used to detect HCV patients with high accuracy based on the enzymes, proteins, and biomarker values contained in a patient’s blood sample using genetic programming symbolic classification (GPSC) algorithm. Not only that, but the idea was also to obtain a mathematical equation that could detect the progress of the disease i.e., Hepatitis C, Fibrosis, and Cirrhosis using the GPSC algorithm. Since the original dataset was imbalanced (a large number of healthy patients versus a small number of Hepatitis C/Fibrosis/Cirrhosis patients) the dataset was balanced using random oversampling, SMOTE, ADSYN, and Borderline SMOTE methods. The symbolic expressions (mathematical equations) were obtained using the GPSC algorithm using a rigorous process of 5-fold cross-validation with a random hyperparameter search method which had to be developed for this problem. To evaluate each symbolic expression generated with GPSC the mean and standard deviation values of accuracy (ACC), the area under the receiver operating characteristic curve (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>), precision, recall, and F1-score were obtained. In a simple binary case (healthy vs. Hepatitis C patients) the best case was achieved with a dataset balanced with the Borderline SMOTE method. The results are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>A</mi><mi>C</mi><mi>C</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>C</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>U</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.99</mn><mo>±</mo><mn>5.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.99</mn><mo>±</mo><mn>5.4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.998</mn><mo>±</mo><mn>1.3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.98</mn><mo>±</mo><mn>1.19</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.99</mn><mo>±</mo><mn>5.39</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. For the multiclass problem, OneVsRestClassifer was used in combination with GPSC 5-fold cross-validation and random hyperparameter search, and the best case was achieved with a dataset balanced with the Borderline SMOTE method. To evaluate symbolic expressions obtained in this case previous evaluation metric methods were used however for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></semantics></math></inline-formula> the macro values were computed since this method calculates metrics for each label, and find their unweighted mean value. In multiclass case the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mrow><mi>A</mi><mi>C</mi><mi>C</mi></mrow><mo>¯</mo></mover><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>C</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mi>U</mi><mi>C</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow><mo>¯</mo></mover><mrow><mi>m</mi><mi>a</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>±</mo><mi>S</mi><mi>D</mi><mrow><mo>(</mo><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.934</mn><mo>±</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.987</mn><mo>±</mo><mn>1.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.942</mn><mo>±</mo><mn>6.9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.934</mn><mo>±</mo><mn>7.84</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.932</mn><mo>±</mo><mn>8.4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. For the best binary and multi-class cases, the symbolic expressions are shown and evaluated on the original dataset.https://www.mdpi.com/2076-3417/13/1/574ADASYNborderline SMOTEgenetic programming-symbolic classifierHepatitis Cfibrosiscirrhosis
spellingShingle Nikola Anđelić
Ivan Lorencin
Sandi Baressi Šegota
Zlatan Car
The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm
Applied Sciences
ADASYN
borderline SMOTE
genetic programming-symbolic classifier
Hepatitis C
fibrosis
cirrhosis
title The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm
title_full The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm
title_fullStr The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm
title_full_unstemmed The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm
title_short The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm
title_sort development of symbolic expressions for the detection of hepatitis c patients and the disease progression from blood parameters using genetic programming symbolic classification algorithm
topic ADASYN
borderline SMOTE
genetic programming-symbolic classifier
Hepatitis C
fibrosis
cirrhosis
url https://www.mdpi.com/2076-3417/13/1/574
work_keys_str_mv AT nikolaanđelic thedevelopmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm
AT ivanlorencin thedevelopmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm
AT sandibaressisegota thedevelopmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm
AT zlatancar thedevelopmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm
AT nikolaanđelic developmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm
AT ivanlorencin developmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm
AT sandibaressisegota developmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm
AT zlatancar developmentofsymbolicexpressionsforthedetectionofhepatitiscpatientsandthediseaseprogressionfrombloodparametersusinggeneticprogrammingsymbolicclassificationalgorithm