Approximation properties of Kantorovich type q-Balázs-Szabados operators
In this paper, we introduce a new kind of q-Balázs-Szabados-Kantorovich operators called q-BSK operators. We give a weighted statistical approximation theorem and the rate of convergence of the q-BSK operators. Also, we investigate the local approximation results. Further, we give some comparisons a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2019-01-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | https://doi.org/10.1515/dema-2019-0002 |
_version_ | 1831549374486806528 |
---|---|
author | Özkan Esma Yıldız |
author_facet | Özkan Esma Yıldız |
author_sort | Özkan Esma Yıldız |
collection | DOAJ |
description | In this paper, we introduce a new kind of q-Balázs-Szabados-Kantorovich operators called q-BSK operators. We give a weighted statistical approximation theorem and the rate of convergence of the q-BSK operators. Also, we investigate the local approximation results. Further, we give some comparisons associated with the convergence of q-BSK operators. |
first_indexed | 2024-12-17T02:35:37Z |
format | Article |
id | doaj.art-278adf58446b4a6d90a5842b2ce9b70a |
institution | Directory Open Access Journal |
issn | 2391-4661 |
language | English |
last_indexed | 2024-12-17T02:35:37Z |
publishDate | 2019-01-01 |
publisher | De Gruyter |
record_format | Article |
series | Demonstratio Mathematica |
spelling | doaj.art-278adf58446b4a6d90a5842b2ce9b70a2022-12-21T22:06:51ZengDe GruyterDemonstratio Mathematica2391-46612019-01-01521101910.1515/dema-2019-0002dema-2019-0002Approximation properties of Kantorovich type q-Balázs-Szabados operatorsÖzkan Esma Yıldız0Gazi University, Faculty of Science, Department of Mathematics, 06500, Ankara, TurkeyIn this paper, we introduce a new kind of q-Balázs-Szabados-Kantorovich operators called q-BSK operators. We give a weighted statistical approximation theorem and the rate of convergence of the q-BSK operators. Also, we investigate the local approximation results. Further, we give some comparisons associated with the convergence of q-BSK operators.https://doi.org/10.1515/dema-2019-0002balázs-szabados operatorsq-calculusrate of convergencepeetre’s k-functional41a2541a3541a36 |
spellingShingle | Özkan Esma Yıldız Approximation properties of Kantorovich type q-Balázs-Szabados operators Demonstratio Mathematica balázs-szabados operators q-calculus rate of convergence peetre’s k-functional 41a25 41a35 41a36 |
title | Approximation properties of Kantorovich type q-Balázs-Szabados operators |
title_full | Approximation properties of Kantorovich type q-Balázs-Szabados operators |
title_fullStr | Approximation properties of Kantorovich type q-Balázs-Szabados operators |
title_full_unstemmed | Approximation properties of Kantorovich type q-Balázs-Szabados operators |
title_short | Approximation properties of Kantorovich type q-Balázs-Szabados operators |
title_sort | approximation properties of kantorovich type q balazs szabados operators |
topic | balázs-szabados operators q-calculus rate of convergence peetre’s k-functional 41a25 41a35 41a36 |
url | https://doi.org/10.1515/dema-2019-0002 |
work_keys_str_mv | AT ozkanesmayıldız approximationpropertiesofkantorovichtypeqbalazsszabadosoperators |