Composting and Methane Emissions of Coffee By-Products

In the last 20 years, the demand for coffee production has increased detrimentally, heightening the need for production, which is currently driving the increase in land cultivation for coffee. However, this increase in production ultimately leads to the amplification of waste produced. This study ai...

Full description

Bibliographic Details
Main Authors: Macarena San Martin Ruiz, Martin Reiser, Martin Kranert
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/12/9/1153
Description
Summary:In the last 20 years, the demand for coffee production has increased detrimentally, heightening the need for production, which is currently driving the increase in land cultivation for coffee. However, this increase in production ultimately leads to the amplification of waste produced. This study aims to develop an experimental methodology for sustainable coffee by-products (Pulp (CP)) in Costa Rica for nutrient-rich compost. The performance of the experiments is to explore and optimize composting processes following its key parameters. This will allow quantifying the emissions rate to obtain an emission factor for CP during the open composting process and optimizing the conditions to minimize CH<sub>4</sub> emissions using P and green waste (GW) materials. Five CP and GW mixtures were analyzed for the composting process for ten weeks, acting P as primary input material as a by-product. Quantification of the methane emissions was performed in two areas: composting area and open field deposition. Peak temperatures of compost appeared at twenty-five days for control and five days for GW added treatments. CP emission factors provide a similar result with the standard values recommended by the literature, accomplishing the emission reductions. Thus, this study designed and validated a sustainable protocol for transforming coffee by-products into compost.
ISSN:2073-4433