Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II)
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without furth...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-09-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/16/9/1540 |
_version_ | 1811306614910615552 |
---|---|
author | Guo Zhao Hui Wang Gang Liu Zhiqiang Wang |
author_facet | Guo Zhao Hui Wang Gang Liu Zhiqiang Wang |
author_sort | Guo Zhao |
collection | DOAJ |
description | An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results. |
first_indexed | 2024-04-13T08:48:36Z |
format | Article |
id | doaj.art-27a6dc63e0724a1eb7244998cbb2d2fd |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-04-13T08:48:36Z |
publishDate | 2016-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-27a6dc63e0724a1eb7244998cbb2d2fd2022-12-22T02:53:35ZengMDPI AGSensors1424-82202016-09-01169154010.3390/s16091540s16091540Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II)Guo Zhao0Hui Wang1Gang Liu2Zhiqiang Wang3Key Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083, ChinaKey Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083, ChinaKey Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083, ChinaCollege of Computer Science and Technology, Shandong University of Technology, Zibo 255049, ChinaAn easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.http://www.mdpi.com/1424-8220/16/9/1540square wave anodic stripping voltammetryartificial neural networkbismuth film electrodePb(II)Cd(II) |
spellingShingle | Guo Zhao Hui Wang Gang Liu Zhiqiang Wang Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II) Sensors square wave anodic stripping voltammetry artificial neural network bismuth film electrode Pb(II) Cd(II) |
title | Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II) |
title_full | Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II) |
title_fullStr | Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II) |
title_full_unstemmed | Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II) |
title_short | Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II) |
title_sort | optimization of stripping voltammetric sensor by a back propagation artificial neural network for the accurate determination of pb ii in the presence of cd ii |
topic | square wave anodic stripping voltammetry artificial neural network bismuth film electrode Pb(II) Cd(II) |
url | http://www.mdpi.com/1424-8220/16/9/1540 |
work_keys_str_mv | AT guozhao optimizationofstrippingvoltammetricsensorbyabackpropagationartificialneuralnetworkfortheaccuratedeterminationofpbiiinthepresenceofcdii AT huiwang optimizationofstrippingvoltammetricsensorbyabackpropagationartificialneuralnetworkfortheaccuratedeterminationofpbiiinthepresenceofcdii AT gangliu optimizationofstrippingvoltammetricsensorbyabackpropagationartificialneuralnetworkfortheaccuratedeterminationofpbiiinthepresenceofcdii AT zhiqiangwang optimizationofstrippingvoltammetricsensorbyabackpropagationartificialneuralnetworkfortheaccuratedeterminationofpbiiinthepresenceofcdii |