Expression and preliminary characterization of human MICU2

MICU2 has been reported to interact with MICU1 and participate in the regulation of mitochondrial Ca2+ uptake, although the molecular determinants underlying the function of MICU2 is unknown. In order to characterize MICU2 we screened a series of N-terminal and C-terminal truncations and obtained co...

Full description

Bibliographic Details
Main Authors: Dan Li, Wenping Wu, Hairun Pei, Qiang Wei, Qingzhan Yang, Jimin Zheng, Zongchao Jia
Format: Article
Language:English
Published: The Company of Biologists 2016-07-01
Series:Biology Open
Subjects:
Online Access:http://bio.biologists.org/content/5/7/962
Description
Summary:MICU2 has been reported to interact with MICU1 and participate in the regulation of mitochondrial Ca2+ uptake, although the molecular determinants underlying the function of MICU2 is unknown. In order to characterize MICU2 we screened a series of N-terminal and C-terminal truncations and obtained constructs which can be expressed in abundance, giving rise to soluble samples to enable subsequent characterizations. Size exclusion chromatography (SEC) and multi-angle laser light scattering (MALLS) revealed that MICU2 exists as a monomer in Ca2+-free conditions but forms a dimer in Ca2+-bound conditions. Unlike MICU1, the C-helix domain of MICU2 exhibits no influence on protein conformation in both Ca2+-free and Ca2+-bound forms. Furthermore, mutation of the first EF-hand abolishes the ability of MICU2 to switch to a dimer in the presence of Ca2+, indicating that the first EF-hand is not only involved in Ca2+ binding but also in conformational change. Our pull-down and co-immunoprecipitation assays suggest that, in addition to disulfide bonds, salt bridges also contribute to MICU1-MICU2 heterodimer formation.
ISSN:2046-6390