Analysis on Optimal Error Exponents of Binary Classification for Source with Multiple Subclasses

We consider a binary classification problem for a test sequence to determine from which source the sequence is generated. The system classifies the test sequence based on empirically observed (training) sequences obtained from unknown sources <inline-formula><math xmlns="http://www.w3....

Full description

Bibliographic Details
Main Authors: Hiroto Kuramata, Hideki Yagi
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/5/635
Description
Summary:We consider a binary classification problem for a test sequence to determine from which source the sequence is generated. The system classifies the test sequence based on empirically observed (training) sequences obtained from unknown sources <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>2</mn></msub></semantics></math></inline-formula>. We analyze the asymptotic fundamental limits of statistical classification for sources with multiple subclasses. We investigate the first- and second-order maximum error exponents under the constraint that the type-I error probability for all pairs of distributions decays exponentially fast and the type-II error probability is upper bounded by a small constant. In this paper, we first give a classifier which achieves the asymptotically maximum error exponent in the class of deterministic classifiers for sources with multiple subclasses, and then provide a characterization of the first-order error exponent. We next provide a characterization of the second-order error exponent in the case where only <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>2</mn></msub></semantics></math></inline-formula> has multiple subclasses but <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>1</mn></msub></semantics></math></inline-formula> does not. We generalize our results to classification in the case that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>2</mn></msub></semantics></math></inline-formula> are a stationary and memoryless source and a mixed memoryless source with general mixture, respectively.
ISSN:1099-4300