Diffusion basis spectrum imaging for identifying pathologies in MS subtypes

Abstract Diffusion basis spectrum imaging (DBSI) combines discrete anisotropic diffusion tensors and the spectrum of isotropic diffusion tensors to model the underlying multiple sclerosis (MS) pathologies. We used clinical MS subtypes as a surrogate of underlying pathologies to assess DBSI as a biom...

Full description

Bibliographic Details
Main Authors: Afsaneh Shirani, Peng Sun, Kathryn Trinkaus, Dana C. Perantie, Ajit George, Robert T. Naismith, Robert E. Schmidt, Sheng‐Kwei Song, Anne H. Cross
Format: Article
Language:English
Published: Wiley 2019-11-01
Series:Annals of Clinical and Translational Neurology
Online Access:https://doi.org/10.1002/acn3.50903
_version_ 1818607599418867712
author Afsaneh Shirani
Peng Sun
Kathryn Trinkaus
Dana C. Perantie
Ajit George
Robert T. Naismith
Robert E. Schmidt
Sheng‐Kwei Song
Anne H. Cross
author_facet Afsaneh Shirani
Peng Sun
Kathryn Trinkaus
Dana C. Perantie
Ajit George
Robert T. Naismith
Robert E. Schmidt
Sheng‐Kwei Song
Anne H. Cross
author_sort Afsaneh Shirani
collection DOAJ
description Abstract Diffusion basis spectrum imaging (DBSI) combines discrete anisotropic diffusion tensors and the spectrum of isotropic diffusion tensors to model the underlying multiple sclerosis (MS) pathologies. We used clinical MS subtypes as a surrogate of underlying pathologies to assess DBSI as a biomarker of pathology in 55 individuals with MS. Restricted isotropic fraction (reflecting cellularity) and fiber fraction (representing apparent axonal density) were the most important DBSI metrics to classify MS using brain white matter lesions. These DBSI metrics outperformed lesion volume. When analyzing the normal‐appearing corpus callosum, the most significant DBSI metrics were fiber fraction, radial diffusivity (reflecting myelination), and nonrestricted isotropic fraction (representing edema). This study provides preliminary evidence supporting the ability of DBSI as a potential noninvasive biomarker of MS neuropathology.
first_indexed 2024-12-16T14:29:19Z
format Article
id doaj.art-27b360271047449583364d0c60d541d6
institution Directory Open Access Journal
issn 2328-9503
language English
last_indexed 2024-12-16T14:29:19Z
publishDate 2019-11-01
publisher Wiley
record_format Article
series Annals of Clinical and Translational Neurology
spelling doaj.art-27b360271047449583364d0c60d541d62022-12-21T22:28:17ZengWileyAnnals of Clinical and Translational Neurology2328-95032019-11-016112323232710.1002/acn3.50903Diffusion basis spectrum imaging for identifying pathologies in MS subtypesAfsaneh Shirani0Peng Sun1Kathryn Trinkaus2Dana C. Perantie3Ajit George4Robert T. Naismith5Robert E. Schmidt6Sheng‐Kwei Song7Anne H. Cross8The John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section Department of Neurology Washington University School of Medicine St. Louis MissouriDepartment of Radiology Mallinckrodt Institute of Radiology Washington University School of Medicine St. Louis MissouriBiostatistics Shared Resource and Siteman Cancer Center Washington University School of Medicine St. Louis MissouriThe John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section Department of Neurology Washington University School of Medicine St. Louis MissouriDepartment of Radiology Mallinckrodt Institute of Radiology Washington University School of Medicine St. Louis MissouriThe John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section Department of Neurology Washington University School of Medicine St. Louis MissouriDepartment of Pathology and Immunology Washington University School of Medicine St. Louis MissouriDepartment of Radiology Mallinckrodt Institute of Radiology Washington University School of Medicine St. Louis MissouriThe John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section Department of Neurology Washington University School of Medicine St. Louis MissouriAbstract Diffusion basis spectrum imaging (DBSI) combines discrete anisotropic diffusion tensors and the spectrum of isotropic diffusion tensors to model the underlying multiple sclerosis (MS) pathologies. We used clinical MS subtypes as a surrogate of underlying pathologies to assess DBSI as a biomarker of pathology in 55 individuals with MS. Restricted isotropic fraction (reflecting cellularity) and fiber fraction (representing apparent axonal density) were the most important DBSI metrics to classify MS using brain white matter lesions. These DBSI metrics outperformed lesion volume. When analyzing the normal‐appearing corpus callosum, the most significant DBSI metrics were fiber fraction, radial diffusivity (reflecting myelination), and nonrestricted isotropic fraction (representing edema). This study provides preliminary evidence supporting the ability of DBSI as a potential noninvasive biomarker of MS neuropathology.https://doi.org/10.1002/acn3.50903
spellingShingle Afsaneh Shirani
Peng Sun
Kathryn Trinkaus
Dana C. Perantie
Ajit George
Robert T. Naismith
Robert E. Schmidt
Sheng‐Kwei Song
Anne H. Cross
Diffusion basis spectrum imaging for identifying pathologies in MS subtypes
Annals of Clinical and Translational Neurology
title Diffusion basis spectrum imaging for identifying pathologies in MS subtypes
title_full Diffusion basis spectrum imaging for identifying pathologies in MS subtypes
title_fullStr Diffusion basis spectrum imaging for identifying pathologies in MS subtypes
title_full_unstemmed Diffusion basis spectrum imaging for identifying pathologies in MS subtypes
title_short Diffusion basis spectrum imaging for identifying pathologies in MS subtypes
title_sort diffusion basis spectrum imaging for identifying pathologies in ms subtypes
url https://doi.org/10.1002/acn3.50903
work_keys_str_mv AT afsanehshirani diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT pengsun diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT kathryntrinkaus diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT danacperantie diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT ajitgeorge diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT roberttnaismith diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT roberteschmidt diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT shengkweisong diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes
AT annehcross diffusionbasisspectrumimagingforidentifyingpathologiesinmssubtypes