On the uniqueness of d-vertex magic constant

Let G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For v ∈ V, let ND(v) = {u ∈ V : d(u, v) ∈ D}. The graph G is said to be D-vertex magic if there exists a bijection f : V (G) → {1, 2, . . . , n} such that for all v ∈ V, ∑uv∈ND(v) f(u) is a constant, called D-vertex magic constant....

Full description

Bibliographic Details
Main Authors: Arumugam S., Kamatchi N., Vijayakumar G.R.
Format: Article
Language:English
Published: University of Zielona Góra 2014-05-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1728
_version_ 1797704376370855936
author Arumugam S.
Kamatchi N.
Vijayakumar G.R.
author_facet Arumugam S.
Kamatchi N.
Vijayakumar G.R.
author_sort Arumugam S.
collection DOAJ
description Let G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For v ∈ V, let ND(v) = {u ∈ V : d(u, v) ∈ D}. The graph G is said to be D-vertex magic if there exists a bijection f : V (G) → {1, 2, . . . , n} such that for all v ∈ V, ∑uv∈ND(v) f(u) is a constant, called D-vertex magic constant. O’Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete r-partite graphs where r ≥ 4.
first_indexed 2024-03-12T05:19:28Z
format Article
id doaj.art-27ccbba92939440091a6f52cce08c247
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T05:19:28Z
publishDate 2014-05-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-27ccbba92939440091a6f52cce08c2472023-09-03T07:47:21ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922014-05-0134227928610.7151/dmgt.1728dmgt.1728On the uniqueness of d-vertex magic constantArumugam S.0Kamatchi N.1Vijayakumar G.R.2National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH) Kalasalingam University Anand Nagar, Krishnankoil-626 126, Tamil Nadu, IndiaNational Centre for Advanced Research in Discrete Mathematics (n-CARDMATH) Kalasalingam University Anand Nagar, Krishnankoil-626 126, Tamil Nadu, IndiaVijayakumar School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road, Colaba, Mumbai 400 005, IndiaLet G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For v ∈ V, let ND(v) = {u ∈ V : d(u, v) ∈ D}. The graph G is said to be D-vertex magic if there exists a bijection f : V (G) → {1, 2, . . . , n} such that for all v ∈ V, ∑uv∈ND(v) f(u) is a constant, called D-vertex magic constant. O’Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete r-partite graphs where r ≥ 4.https://doi.org/10.7151/dmgt.1728distance magic graphd-vertex magic graphmagic constantdominating functionfractional domination numbe
spellingShingle Arumugam S.
Kamatchi N.
Vijayakumar G.R.
On the uniqueness of d-vertex magic constant
Discussiones Mathematicae Graph Theory
distance magic graph
d-vertex magic graph
magic constant
dominating function
fractional domination numbe
title On the uniqueness of d-vertex magic constant
title_full On the uniqueness of d-vertex magic constant
title_fullStr On the uniqueness of d-vertex magic constant
title_full_unstemmed On the uniqueness of d-vertex magic constant
title_short On the uniqueness of d-vertex magic constant
title_sort on the uniqueness of d vertex magic constant
topic distance magic graph
d-vertex magic graph
magic constant
dominating function
fractional domination numbe
url https://doi.org/10.7151/dmgt.1728
work_keys_str_mv AT arumugams ontheuniquenessofdvertexmagicconstant
AT kamatchin ontheuniquenessofdvertexmagicconstant
AT vijayakumargr ontheuniquenessofdvertexmagicconstant