Neural networks for quantum inverse problems

Quantum inverse problem (QIP) is the problem of estimating an unknown quantum system from a set of measurements, whereas the classical counterpart is the inverse problem of estimating a distribution from a set of observations. In this paper, we present a neural-network-based method for QIPs, which h...

Full description

Bibliographic Details
Main Authors: Ningping Cao, Jie Xie, Aonan Zhang, Shi-Yao Hou, Lijian Zhang, Bei Zeng
Format: Article
Language:English
Published: IOP Publishing 2022-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ac706c
Description
Summary:Quantum inverse problem (QIP) is the problem of estimating an unknown quantum system from a set of measurements, whereas the classical counterpart is the inverse problem of estimating a distribution from a set of observations. In this paper, we present a neural-network-based method for QIPs, which has been widely explored for its classical counterpart. The proposed method utilizes the quantumness of the QIPs and takes advantage of the computational power of neural networks to achieve remarkable efficiency for the quantum state estimation. We test the method on the problem of maximum entropy estimation of an unknown state ρ from partial information both numerically and experimentally. Our method yields high fidelity, efficiency and robustness for both numerical experiments and quantum optical experiments.
ISSN:1367-2630