Tracing the volatilomic fingerprint of grape pomace as a powerful approach for its valorization

The huge amount of grape pomace (GP) generated every year worldwide, particularly in Europe, creates negative impacts at the economic and environmental levels. As far as we know, scarce research has been done on the volatilomic fingerprint of GP. To meet consumer demand for healthy foods, there is a...

Full description

Bibliographic Details
Main Authors: Teresa Abreu, Gonçalo Jasmins, Catarina Bettencourt, Juan Teixeira, José S. Câmara, Rosa Perestrelo
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Current Research in Food Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2665927123001764
Description
Summary:The huge amount of grape pomace (GP) generated every year worldwide, particularly in Europe, creates negative impacts at the economic and environmental levels. As far as we know, scarce research has been done on the volatilomic fingerprint of GP. To meet consumer demand for healthy foods, there is a growing interest in the characterization of particular volatile organic metabolites (VOMS) in GP that can be used for industrial applications, including the food industry. In this study, the volatilomic fingerprint of GP obtained from different Vitis vinifera L. grapes was established by solid phase microextraction (HS-SPME) combined to gas chromatography-mass spectrometry (GC-MS), to explore the properties of most dominant VOMs in a context of its application on marketable products. A total of 52 VOMs belonging to different chemical families were identified. Alcohols, carbonyl compounds, and esters, are the most dominant, representing 38.8, 29.3, and 24.2% of the total volatile profile of the investigated GP, respectively. Esters (e.g., isoamyl acetate, hexyl acetate, ethyl hexanoate) and alcohols (e.g., 3-methyl butan-2-ol, hexan-1-ol) can be used as flavoring agents with potential use in the food industry, and in the cosmetic industry, for fragrances production. In addition, the identified terpenoids (e.g., menthol, ylangene, limonene) exhibit antioxidant, antimicrobial, and anticancer, biological properties, among others, boosting their potential application in the pharmaceutical industry. The obtained results revealed the potential of some VOMs from GP to replace synthetic antioxidants, colorants, and antimicrobials used in the food industry, and in the cosmetic and pharmaceutical industry, meeting the increasing consumer demand for natural alternative compounds.
ISSN:2665-9271