Ohmic Dissipation During the Formation of Super-Earth

The super-Earth population, as one of the representatives of exoplanets, plays an important role in constraining the planet formation theories. According to the prediction from core-accretion models, super-Earths should be rare because their masses are in the range of the critical mass above which t...

Full description

Bibliographic Details
Main Authors: Shi Jia, Wei, Zhong, Cong Yu
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acd4bc
Description
Summary:The super-Earth population, as one of the representatives of exoplanets, plays an important role in constraining the planet formation theories. According to the prediction from core-accretion models, super-Earths should be rare because their masses are in the range of the critical mass above which they would grow to be gas giants by runaway gas accretion. In this work, we investigate the effect of ohmic dissipation on the planetary thermal structure and cooling contraction as planets accrete gas from their surrounding disks. We find that the extra heating energy from ohmic heating deposited into planetary envelopes can push the planetary radiative-convective boundaries inward and prevent the planets from cooling, and can even halt accretion. We explore parameter space to study the dependence of cooling timescale on the input parameters of the ohmic-dissipation model. Numerical results show that gas accretion can be halted before runaway gas accretion and the envelope mass is only several percent of the planetary core mass for some parameter sets. Our results suggest that ohmic dissipation is a potential mechanism to delay the gas accretion and promote the formation of super-Earths. Future observations may help to constrain the importance of ohmic dissipation on super-Earth formation.
ISSN:1538-4357