The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions
The exploration of high-performance and low-cost electrocatalysts towards the oxygen evolution reaction (OER) is essential for large-scale water/seawater splitting. Herein, we develop a strategy involving the in situ generation of a template and pore-former to encapsulate a Ni<sub>5</sub>...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/12/11/1848 |
_version_ | 1797492343311433728 |
---|---|
author | Xiangyun Tian Peng Yi Junwei Sun Caiyun Li Rongzhan Liu Jian-Kun Sun |
author_facet | Xiangyun Tian Peng Yi Junwei Sun Caiyun Li Rongzhan Liu Jian-Kun Sun |
author_sort | Xiangyun Tian |
collection | DOAJ |
description | The exploration of high-performance and low-cost electrocatalysts towards the oxygen evolution reaction (OER) is essential for large-scale water/seawater splitting. Herein, we develop a strategy involving the in situ generation of a template and pore-former to encapsulate a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P heterojunction and dispersive FeNi alloy hybrid particles into a three-dimensional hierarchical porous graphitic carbon framework (labeled as Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C) via a room-temperature solid-state grinding and sodium-carbonate-assisted pyrolysis method. The synergistic effect of the components and the architecture provides a large surface area with a sufficient number of active sites and a hierarchical porous pathway for efficient electron transfer and mass diffusion. Furthermore, a graphitic carbon coating layer restrains the corrosion of alloy particles to boost the long-term durability of the catalyst. Consequently, the Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C catalyst exhibits extraordinary OER activity with a low overpotential of 242 mV (10 mA cm<sup>−2</sup>), outperforming the commercial RuO<sub>2</sub> catalyst in 1 M KOH. Meanwhile, a scale-up of the Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C catalyst created by a ball-milling method displays a similar level of activity to the above grinding method. In 1 M KOH + seawater electrolyte, Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C also displays excellent stability; it can continuously operate for 160 h with a negligible potential increase of 2 mV. This work may provide a new avenue for facile mass production of an efficient electrocatalyst for water/seawater splitting and diverse other applications. |
first_indexed | 2024-03-10T01:01:18Z |
format | Article |
id | doaj.art-27e9410520704c2683af4e9b8d36b841 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-10T01:01:18Z |
publishDate | 2022-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-27e9410520704c2683af4e9b8d36b8412023-11-23T14:33:13ZengMDPI AGNanomaterials2079-49912022-05-011211184810.3390/nano12111848The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution ReactionsXiangyun Tian0Peng Yi1Junwei Sun2Caiyun Li3Rongzhan Liu4Jian-Kun Sun5College of Textiles and Clothing, Qingdao University, Qingdao 266071, ChinaCollege of Textiles and Clothing, Qingdao University, Qingdao 266071, ChinaCollege of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, ChinaCollege of Textiles and Clothing, Qingdao University, Qingdao 266071, ChinaCollege of Textiles and Clothing, Qingdao University, Qingdao 266071, ChinaCollege of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, ChinaThe exploration of high-performance and low-cost electrocatalysts towards the oxygen evolution reaction (OER) is essential for large-scale water/seawater splitting. Herein, we develop a strategy involving the in situ generation of a template and pore-former to encapsulate a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P heterojunction and dispersive FeNi alloy hybrid particles into a three-dimensional hierarchical porous graphitic carbon framework (labeled as Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C) via a room-temperature solid-state grinding and sodium-carbonate-assisted pyrolysis method. The synergistic effect of the components and the architecture provides a large surface area with a sufficient number of active sites and a hierarchical porous pathway for efficient electron transfer and mass diffusion. Furthermore, a graphitic carbon coating layer restrains the corrosion of alloy particles to boost the long-term durability of the catalyst. Consequently, the Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C catalyst exhibits extraordinary OER activity with a low overpotential of 242 mV (10 mA cm<sup>−2</sup>), outperforming the commercial RuO<sub>2</sub> catalyst in 1 M KOH. Meanwhile, a scale-up of the Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C catalyst created by a ball-milling method displays a similar level of activity to the above grinding method. In 1 M KOH + seawater electrolyte, Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi@C also displays excellent stability; it can continuously operate for 160 h with a negligible potential increase of 2 mV. This work may provide a new avenue for facile mass production of an efficient electrocatalyst for water/seawater splitting and diverse other applications.https://www.mdpi.com/2079-4991/12/11/1848FeNi alloyNi<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P heterojunctionsolid-state grindingin situ templateoxygen evolution reaction |
spellingShingle | Xiangyun Tian Peng Yi Junwei Sun Caiyun Li Rongzhan Liu Jian-Kun Sun The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions Nanomaterials FeNi alloy Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P heterojunction solid-state grinding in situ template oxygen evolution reaction |
title | The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions |
title_full | The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions |
title_fullStr | The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions |
title_full_unstemmed | The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions |
title_short | The Scalable Solid-State Synthesis of a Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions |
title_sort | scalable solid state synthesis of a ni sub 5 sub p sub 4 sub ni sub 2 sub p feni alloy encapsulated into a hierarchical porous carbon framework for efficient oxygen evolution reactions |
topic | FeNi alloy Ni<sub>5</sub>P<sub>4</sub>/Ni<sub>2</sub>P heterojunction solid-state grinding in situ template oxygen evolution reaction |
url | https://www.mdpi.com/2079-4991/12/11/1848 |
work_keys_str_mv | AT xiangyuntian thescalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT pengyi thescalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT junweisun thescalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT caiyunli thescalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT rongzhanliu thescalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT jiankunsun thescalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT xiangyuntian scalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT pengyi scalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT junweisun scalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT caiyunli scalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT rongzhanliu scalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions AT jiankunsun scalablesolidstatesynthesisofanisub5subpsub4subnisub2subpfenialloyencapsulatedintoahierarchicalporouscarbonframeworkforefficientoxygenevolutionreactions |