Energy performance of a hybrid DSF-inspired solar heating façade for office buildings

Double-skin façade (DSF) is a passive design strategy that enhances building energy performance and improves indoor thermal comfort. In addition, DSF has been proposed as a hybrid façade that uses a cavity to preheat fresh air supplied to an air-handling unit (AHU) to reduce energy consumption for h...

Full description

Bibliographic Details
Main Authors: Bang Suyeon, Yoon Nari, Heo Yeonsook
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/33/e3sconf_iaqvec2023_02009.pdf
Description
Summary:Double-skin façade (DSF) is a passive design strategy that enhances building energy performance and improves indoor thermal comfort. In addition, DSF has been proposed as a hybrid façade that uses a cavity to preheat fresh air supplied to an air-handling unit (AHU) to reduce energy consumption for heating. However, to the authors' knowledge, there is no study about the design of DSF tailored for the hybrid system application yet. Therefore, this study focuses on the usability of DSF as a hybrid system and evaluates the performance. First, parametric analysis of the hybrid solar heating façade geometry and thermal properties of glazing and absorber materials was performed to identify the most influencing design parameters. Second, the multivariate linear regression (MLR) model was developed to predict the performance of all parameters comprehensively affecting the hybrid solar heating façade. Finally, the performance of various design alternatives for hybrid solar heating façade that provide the minimum fresh air supply was evaluated through case studies. The analysis results confirmed that the hybrid solar heating façade can reduce the heating energy due to the preheating effect by up to 38%.
ISSN:2267-1242