Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C

Recently, worldwide, the attention being paid to hydrogen and its derivatives as alternative carbon-free (or low-carbon) options for the electricity sector, the transport sector, and the industry sector has increased. Several projects in the field of low-emission hydrogen production (particularly el...

Full description

Bibliographic Details
Main Author: Osama A. Marzouk
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/3/646
_version_ 1797318784626720768
author Osama A. Marzouk
author_facet Osama A. Marzouk
author_sort Osama A. Marzouk
collection DOAJ
description Recently, worldwide, the attention being paid to hydrogen and its derivatives as alternative carbon-free (or low-carbon) options for the electricity sector, the transport sector, and the industry sector has increased. Several projects in the field of low-emission hydrogen production (particularly electrolysis-based green hydrogen) have either been constructed or analyzed for their feasibility. Despite the great ambitions announced by some nations with respect to becoming hubs for hydrogen production and export, some quantification of the levels at which hydrogen and its derived products are expected to penetrate the global energy system and its various demand sectors would be useful in order to judge the practicality and likelihood of these ambitions and future targets. The current study aims to summarize some of the expectations of the level at which hydrogen and its derivatives could spread into the global economy, under two possible future scenarios. The first future scenario corresponds to a business-as-usual (BAU) pathway, where the world proceeds with the same existing policies and targets related to emissions and low-carbon energy transition. This forms a lower bound for the level of the role of hydrogen and its penetration into the global energy system. The second future scenario corresponds to an emission-conscious pathway, where governments cooperate to implement the changes necessary to decarbonize the economy by 2050 in order to achieve net-zero emissions of carbon dioxide (carbon neutrality), and thus limit the rise in the global mean surface temperature to 1.5 °C by 2100 (compared to pre-industrial periods). This forms an upper bound for the level of the role of hydrogen and its penetration into the global energy system. The study utilizes the latest release of the annual comprehensive report WEO (World Energy Outlook—edition year 2023, the 26th edition) of the IEA (International Energy Agency), as well as the latest release of the annual comprehensive report WETO (World Energy Transitions Outlook—edition year 2023, the third edition) of the IRENA (International Renewable Energy Agency). For the IEA-WEO report, the business-as-usual situation is STEPS (Stated “Energy” Policies Scenario), and the emissions-conscious situation is NZE (Net-Zero Emissions by 2050). For the IRENA-WETO report, the business-as-usual situation is the PES (Planned Energy Scenario), and the emissions-conscious situation is the 1.5°C scenario. Through the results presented here, it becomes possible to infer a realistic range for the production and utilization of hydrogen and its derivatives in 2030 and 2050. In addition, the study enables the divergence between the models used in WEO and WETO to be estimated, by identifying the different predictions for similar variables under similar conditions. The study covers miscellaneous variables related to energy and emissions other than hydrogen, which are helpful in establishing a good view of how the world may look in 2030 and 2050. Some barriers (such as the uncompetitive levelized cost of electrolysis-based green hydrogen) and drivers (such as the German H2Global initiative) for the hydrogen economy are also discussed. The study finds that the large-scale utilization of hydrogen or its derivatives as a source of energy is highly uncertain, and it may be reached slowly, given more than two decades to mature. Despite this, electrolysis-based green hydrogen is expected to dominate the global hydrogen economy, with the annual global production of electrolysis-based green hydrogen expected to increase from 0 million tonnes in 2021 to between 22 million tonnes and 327 million tonnes (with electrolyzer capacity exceeding 5 terawatts) in 2050, depending on the commitment of policymakers toward decarbonization and energy transitions.
first_indexed 2024-03-08T03:57:26Z
format Article
id doaj.art-280a6e3b1592403a9a6a374ae97dcef6
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-08T03:57:26Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-280a6e3b1592403a9a6a374ae97dcef62024-02-09T15:11:25ZengMDPI AGEnergies1996-10732024-01-0117364610.3390/en17030646Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°COsama A. Marzouk0College of Engineering, University of Buraimi, Al Buraimi 512, OmanRecently, worldwide, the attention being paid to hydrogen and its derivatives as alternative carbon-free (or low-carbon) options for the electricity sector, the transport sector, and the industry sector has increased. Several projects in the field of low-emission hydrogen production (particularly electrolysis-based green hydrogen) have either been constructed or analyzed for their feasibility. Despite the great ambitions announced by some nations with respect to becoming hubs for hydrogen production and export, some quantification of the levels at which hydrogen and its derived products are expected to penetrate the global energy system and its various demand sectors would be useful in order to judge the practicality and likelihood of these ambitions and future targets. The current study aims to summarize some of the expectations of the level at which hydrogen and its derivatives could spread into the global economy, under two possible future scenarios. The first future scenario corresponds to a business-as-usual (BAU) pathway, where the world proceeds with the same existing policies and targets related to emissions and low-carbon energy transition. This forms a lower bound for the level of the role of hydrogen and its penetration into the global energy system. The second future scenario corresponds to an emission-conscious pathway, where governments cooperate to implement the changes necessary to decarbonize the economy by 2050 in order to achieve net-zero emissions of carbon dioxide (carbon neutrality), and thus limit the rise in the global mean surface temperature to 1.5 °C by 2100 (compared to pre-industrial periods). This forms an upper bound for the level of the role of hydrogen and its penetration into the global energy system. The study utilizes the latest release of the annual comprehensive report WEO (World Energy Outlook—edition year 2023, the 26th edition) of the IEA (International Energy Agency), as well as the latest release of the annual comprehensive report WETO (World Energy Transitions Outlook—edition year 2023, the third edition) of the IRENA (International Renewable Energy Agency). For the IEA-WEO report, the business-as-usual situation is STEPS (Stated “Energy” Policies Scenario), and the emissions-conscious situation is NZE (Net-Zero Emissions by 2050). For the IRENA-WETO report, the business-as-usual situation is the PES (Planned Energy Scenario), and the emissions-conscious situation is the 1.5°C scenario. Through the results presented here, it becomes possible to infer a realistic range for the production and utilization of hydrogen and its derivatives in 2030 and 2050. In addition, the study enables the divergence between the models used in WEO and WETO to be estimated, by identifying the different predictions for similar variables under similar conditions. The study covers miscellaneous variables related to energy and emissions other than hydrogen, which are helpful in establishing a good view of how the world may look in 2030 and 2050. Some barriers (such as the uncompetitive levelized cost of electrolysis-based green hydrogen) and drivers (such as the German H2Global initiative) for the hydrogen economy are also discussed. The study finds that the large-scale utilization of hydrogen or its derivatives as a source of energy is highly uncertain, and it may be reached slowly, given more than two decades to mature. Despite this, electrolysis-based green hydrogen is expected to dominate the global hydrogen economy, with the annual global production of electrolysis-based green hydrogen expected to increase from 0 million tonnes in 2021 to between 22 million tonnes and 327 million tonnes (with electrolyzer capacity exceeding 5 terawatts) in 2050, depending on the commitment of policymakers toward decarbonization and energy transitions.https://www.mdpi.com/1996-1073/17/3/646hydrogenIEAIRENASTEPSNZEPES
spellingShingle Osama A. Marzouk
Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
Energies
hydrogen
IEA
IRENA
STEPS
NZE
PES
title Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
title_full Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
title_fullStr Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
title_full_unstemmed Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
title_short Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
title_sort expectations for the role of hydrogen and its derivatives in different sectors through analysis of the four energy scenarios iea steps iea nze irena pes and irena 1 5°c
topic hydrogen
IEA
IRENA
STEPS
NZE
PES
url https://www.mdpi.com/1996-1073/17/3/646
work_keys_str_mv AT osamaamarzouk expectationsfortheroleofhydrogenanditsderivativesindifferentsectorsthroughanalysisofthefourenergyscenariosieastepsieanzeirenapesandirena15c