Experimental Study on Wind Turbine Airfoil Trailing Edge Noise Reduction Using Wavy Leading Edges

Aerodynamic noise produced by the rotating blade is an important hindrance for the rapid development of modern wind turbines. Among the various noise sources, the airfoil trailing edge noise contributes a lot to the wind turbine noise. The control of wind turbine airfoil trailing edge self-noise by...

Full description

Bibliographic Details
Main Authors: Yudi Xing, Xingyu Wang, Weijie Chen, Fan Tong, Weiyang Qiao
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/16/5865
Description
Summary:Aerodynamic noise produced by the rotating blade is an important hindrance for the rapid development of modern wind turbines. Among the various noise sources, the airfoil trailing edge noise contributes a lot to the wind turbine noise. The control of wind turbine airfoil trailing edge self-noise by bio-inspired sinusoidal wavy leading edges is experimentally studied in a semi-anechoic chamber. The noise radiated by the baseline NACA 0012 airfoil and various wavy airfoils is measured using a planar microphone array consisting of fifty-two microphones. The noise source identifications are achieved by using the CLEAN-SC method. The effects of velocity and angle of attack on noise radiation of the baseline airfoil are analyzed in detail. The noise control law of the wavy amplitude and wavelength on airfoil trailing edge noise is explored. Based on the acoustic beamforming results, the noise control effects of the wavy leading edges are intuitively demonstrated. In general, the wavy leading edge with a larger amplitude and smaller wavelength has a better effect on the airfoil trailing edge noise reduction. The maximum sound pressure level reduction can be up to 33.9 dB. The results of this study are expected to provide important information for wind turbine aerodynamic noise control.
ISSN:1996-1073