Classical Analog and Hybrid Metamaterials of Tunable Multiple-Band Electromagnetic Induced Transparency

The electromagnetic induced transparency (EIT) effect originates from the destructive interference in an atomic system, which contributes to the transparency window in its response spectrum. The implementation of EIT requires highly demanding laboratory conditions, which greatly limits its acceptanc...

Full description

Bibliographic Details
Main Authors: Zhi Zhang, Duorui Gao, Jinhai Si, Jiacheng Meng
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/24/4405
Description
Summary:The electromagnetic induced transparency (EIT) effect originates from the destructive interference in an atomic system, which contributes to the transparency window in its response spectrum. The implementation of EIT requires highly demanding laboratory conditions, which greatly limits its acceptance and application. In this paper, an improved harmonic spring oscillation (HSO) model with four oscillators is proposed as a classical analog for the tunable triple-band EIT effect. A more general HSO model including more oscillators is also given, and the analyses of the power absorption in the HSO model conclude a formula, which is more innovative and useful for the study of the multiple-band EIT effect. To further inspect the analogizing ability of the HSO model, a hybrid unit cell containing an electric dipole and toroidal dipoles in the metamaterials is proposed. The highly comparable transmission spectra based on the HSO model and metamaterials indicate the validity of the classical analog in illustrating the formation process of the multiple-band EIT effect in metamaterials. Hence, the HSO model, as a classical analog, is a valid and powerful theoretical tool that can mimic the multiple-band EIT effect in metamaterials.
ISSN:2079-4991