Timing fluctuation correction for the front end of a 100-PW laser

The development of high-intensity ultrafast laser facilities provides the possibility to create novel physical phenomena and matter states. The timing fluctuation of the laser pulses is crucial for pump–probe experiments, which is one of the vital means to observe the ultrafast dynamics driven by in...

Full description

Bibliographic Details
Main Authors: Hongyang Li, Keyang Liu, Xinliang Wang, Xingyan Liu, Xianze Meng, Yanqi Liu, Liwei Song, Yuxin Leng, Ruxin Li
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:High Power Laser Science and Engineering
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2095471923000415/type/journal_article
Description
Summary:The development of high-intensity ultrafast laser facilities provides the possibility to create novel physical phenomena and matter states. The timing fluctuation of the laser pulses is crucial for pump–probe experiments, which is one of the vital means to observe the ultrafast dynamics driven by intense laser pulses. In this paper, we demonstrate the timing fluctuation characterization and control of the front end of a 100-PW laser that is composed of a high-contrast optical parametric amplifier (seed) and a 200-TW optical parametric chirped pulse amplifier (preamplifier). By combining the timing jitter measurement with a feedback system, the laser seed and preamplifier are synchronized to the reference with timing fluctuations of 1.82 and 4.48 fs, respectively. The timing system will be a key prerequisite for the stable operation of 100-PW laser facilities and provide the basis for potential pump–probe experiments performed on the laser.
ISSN:2095-4719
2052-3289