Remote Sensing of Snow Cover Using Spaceborne SAR: A Review

The importance of snow cover extent (SCE) has been proven to strongly link with various natural phenomenon and human activities; consequently, monitoring snow cover is one the most critical topics in studying and understanding the cryosphere. As snow cover can vary significantly within short time sp...

Full description

Bibliographic Details
Main Authors: Ya-Lun S. Tsai, Andreas Dietz, Natascha Oppelt, Claudia Kuenzer
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/12/1456
Description
Summary:The importance of snow cover extent (SCE) has been proven to strongly link with various natural phenomenon and human activities; consequently, monitoring snow cover is one the most critical topics in studying and understanding the cryosphere. As snow cover can vary significantly within short time spans and often extends over vast areas, spaceborne remote sensing constitutes an efficient observation technique to track it continuously. However, as optical imagery is limited by cloud cover and polar darkness, synthetic aperture radar (SAR) attracted more attention for its ability to sense day-and-night under any cloud and weather condition. In addition to widely applied backscattering-based method, thanks to the advancements of spaceborne SAR sensors and image processing techniques, many new approaches based on interferometric SAR (InSAR) and polarimetric SAR (PolSAR) have been developed since the launch of ERS-1 in 1991 to monitor snow cover under both dry and wet snow conditions. Critical auxiliary data including DEM, land cover information, and local meteorological data have also been explored to aid the snow cover analysis. This review presents an overview of existing studies and discusses the advantages, constraints, and trajectories of the current developments.
ISSN:2072-4292