Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils
Determining osmotic suction from the electrical conductivity (EC) of soil pore water was widely reported in the literature. However, while dealing with unsaturated soils, they do not have enough soil pore water to be extracted for a reliable measurement of EC. In this paper, the chilled-mirror dew-p...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-12-01
|
Series: | Journal of Rock Mechanics and Geotechnical Engineering |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1674775522000270 |
_version_ | 1811216721574363136 |
---|---|
author | Zi Ying Nadia Benahmed Yu-Jun Cui Myriam Duc |
author_facet | Zi Ying Nadia Benahmed Yu-Jun Cui Myriam Duc |
author_sort | Zi Ying |
collection | DOAJ |
description | Determining osmotic suction from the electrical conductivity (EC) of soil pore water was widely reported in the literature. However, while dealing with unsaturated soils, they do not have enough soil pore water to be extracted for a reliable measurement of EC. In this paper, the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities (0.05‰, 2.1‰, and 6.76‰). A new piecewise function was proposed to calculate the osmotic suction, with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions (synthetic seawater). EC, ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement. The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one (the difference between the measured total and matric suctions). Results showed that the calculated osmotic suction, especially the one calculated using the proposed function, was in fair agreement with the indirectly measured data (especially for specimens with higher salinity of 6.76‰), suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for low-plasticity soil. In particular, the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement. |
first_indexed | 2024-04-12T06:43:27Z |
format | Article |
id | doaj.art-28456236637740cdac4a5fd5af1ecadd |
institution | Directory Open Access Journal |
issn | 1674-7755 |
language | English |
last_indexed | 2024-04-12T06:43:27Z |
publishDate | 2022-12-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Rock Mechanics and Geotechnical Engineering |
spelling | doaj.art-28456236637740cdac4a5fd5af1ecadd2022-12-22T03:43:38ZengElsevierJournal of Rock Mechanics and Geotechnical Engineering1674-77552022-12-0114619461955Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soilsZi Ying0Nadia Benahmed1Yu-Jun Cui2Myriam Duc3Ecole des Ponts ParisTech, Laboratoire Navier/CERMES, 6-8 Av. Blaise Pascal, Cité Descartes, Champs-sur-Marne, Marne-la-Vallée Cedex 2, 77455, France; Corresponding author.INRAE, Aix Marseille University, Unité de Recherche RECOVER, 3275 Route Cézanne, CS 40061, Aix-en-Provence, 13182, FranceEcole des Ponts ParisTech, Laboratoire Navier/CERMES, 6-8 Av. Blaise Pascal, Cité Descartes, Champs-sur-Marne, Marne-la-Vallée Cedex 2, 77455, FranceUniversité Gustave Eiffel, IFSTTAR/GERS/SRO, 14-20 Boulevard Newton, Champs-sur-Marne, Marne-la-Vallée, 77447, FranceDetermining osmotic suction from the electrical conductivity (EC) of soil pore water was widely reported in the literature. However, while dealing with unsaturated soils, they do not have enough soil pore water to be extracted for a reliable measurement of EC. In this paper, the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities (0.05‰, 2.1‰, and 6.76‰). A new piecewise function was proposed to calculate the osmotic suction, with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions (synthetic seawater). EC, ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement. The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one (the difference between the measured total and matric suctions). Results showed that the calculated osmotic suction, especially the one calculated using the proposed function, was in fair agreement with the indirectly measured data (especially for specimens with higher salinity of 6.76‰), suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for low-plasticity soil. In particular, the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement.http://www.sciencedirect.com/science/article/pii/S1674775522000270Unsaturated soilsMixed salt solutionsOsmotic suctionElectrical conductivity (EC) |
spellingShingle | Zi Ying Nadia Benahmed Yu-Jun Cui Myriam Duc Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils Journal of Rock Mechanics and Geotechnical Engineering Unsaturated soils Mixed salt solutions Osmotic suction Electrical conductivity (EC) |
title | Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils |
title_full | Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils |
title_fullStr | Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils |
title_full_unstemmed | Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils |
title_short | Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils |
title_sort | determining osmotic suction through electrical conductivity for unsaturated low plasticity soils |
topic | Unsaturated soils Mixed salt solutions Osmotic suction Electrical conductivity (EC) |
url | http://www.sciencedirect.com/science/article/pii/S1674775522000270 |
work_keys_str_mv | AT ziying determiningosmoticsuctionthroughelectricalconductivityforunsaturatedlowplasticitysoils AT nadiabenahmed determiningosmoticsuctionthroughelectricalconductivityforunsaturatedlowplasticitysoils AT yujuncui determiningosmoticsuctionthroughelectricalconductivityforunsaturatedlowplasticitysoils AT myriamduc determiningosmoticsuctionthroughelectricalconductivityforunsaturatedlowplasticitysoils |