Research on Lower Limb Motion Recognition Based on Fusion of sEMG and Accelerometer Signals

Since surface electromyograghic (sEMG) signals are non-invasive and capable of reflecting humans’ motion intention, they have been widely used for the motion recognition of upper limbs. However, limited research has been conducted for lower limbs, because the sEMGs of lower limbs are easily affected...

Full description

Bibliographic Details
Main Authors: Qingsong Ai, Yanan Zhang, Weili Qi, Quan Liu, and Kun Chen
Format: Article
Language:English
Published: MDPI AG 2017-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/9/8/147
Description
Summary:Since surface electromyograghic (sEMG) signals are non-invasive and capable of reflecting humans’ motion intention, they have been widely used for the motion recognition of upper limbs. However, limited research has been conducted for lower limbs, because the sEMGs of lower limbs are easily affected by body gravity and muscle jitter. In this paper, sEMG signals and accelerometer signals are acquired and fused to recognize the motion patterns of lower limbs. A curve fitting method based on median filtering is proposed to remove accelerometer noise. As for movement onset detection, an sEMG power spectral correlation coefficient method is used to detect the start and end points of active signals. Then, the time-domain features and wavelet coefficients of sEMG signals are extracted, and a dynamic time warping (DTW) distance is used for feature extraction of acceleration signals. At last, five lower limbs’ motions are classified and recognized by using Gaussian kernel-based linear discriminant analysis (LDA) and support vector machine (SVM) respectively. The results prove that the fused feature-based classification outperforms the classification with only sEMG signals or accelerometer signals, and the fused feature can achieve 95% or higher recognition accuracy, demonstrating the validity of the proposed method.
ISSN:2073-8994