Inter-comparison and evaluation of Arctic sea ice type products

<p>Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. However, systematic inter-comparison and analysis for SITY products are lacking. This study analysed eight daily SITY products from five retrieval approaches covering the winters of 1999–2019, including purely...

Full description

Bibliographic Details
Main Authors: Y. Ye, Y. Luo, Y. Sun, M. Shokr, S. Aaboe, F. Girard-Ardhuin, F. Hui, X. Cheng, Z. Chen
Format: Article
Language:English
Published: Copernicus Publications 2023-01-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/17/279/2023/tc-17-279-2023.pdf
Description
Summary:<p>Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. However, systematic inter-comparison and analysis for SITY products are lacking. This study analysed eight daily SITY products from five retrieval approaches covering the winters of 1999–2019, including purely radiometer-based (C3S-SITY), scatterometer-based (KNMI-SITY and IFREMER-SITY) and combined ones (OSISAF-SITY and Zhang-SITY). These SITY products were inter-compared against a weekly sea ice age product (i.e. NSIDC-SIA – National Snow and Ice Data Center sea ice age) and evaluated with five synthetic aperture radar (SAR) images. The average Arctic multiyear ice (MYI) extent difference between the SITY products and NSIDC-SIA varies from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.32</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="59pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2aa22a9ffdc850c2c372527cc31a192d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-279-2023-ie00001.svg" width="59pt" height="14pt" src="tc-17-279-2023-ie00001.png"/></svg:svg></span></span> to <span class="inline-formula">0.49×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span>. Among them, KNMI-SITY and Zhang-SITY in the QuikSCAT (QSCAT) period (2002–2009) agree best with NSIDC-SIA and perform the best, with the smallest bias of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.001</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="afce16036921b8afb86c180e43b2000f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-279-2023-ie00002.svg" width="65pt" height="14pt" src="tc-17-279-2023-ie00002.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> in first-year ice (FYI) extent and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.02</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="59pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bd104094256357e92162c3b880dbf7b4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-279-2023-ie00003.svg" width="59pt" height="14pt" src="tc-17-279-2023-ie00003.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> in MYI extent. In the Advanced Scatterometer (ASCAT) period (2007–2019), KNMI-SITY tends to overestimate MYI (especially in early winter), whereas Zhang-SITY and IFREMER-SITY tend to underestimate MYI. C3S-SITY performs well in some early winter cases but exhibits large temporal variabilities like OSISAF-SITY. Factors that could impact performances of the SITY products are analysed and summarized. (1) The Ku-band scatterometer generally performs better than the C-band scatterometer for SITY discrimination, while the latter sometimes identifies FYI more accurately, especially when surface scattering dominates the backscatter signature. (2) A simple combination of scatterometer and radiometer data is not always beneficial without further rules of priority. (3) The representativeness of training data and efficiency of classification are crucial for SITY classification. Spatial and temporal variation in characteristic training datasets should be well accounted for in the SITY method. (4) Post-processing corrections play important roles and should be considered with caution.</p>
ISSN:1994-0416
1994-0424