Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis
Abstract Microplastics (MPs) are widespread in aquatic environments and have become a critical environmental issue in recent years due to their adverse impacts on the physiology, reproduction, and survival of aquatic animals. Exposure to MPs also has the potential to induce sub‐lethal behavioral cha...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-02-01
|
Series: | Ecology and Evolution |
Subjects: | |
Online Access: | https://doi.org/10.1002/ece3.8620 |
_version_ | 1817979495143964672 |
---|---|
author | Ally Swank Kadijah Blevins Abby Bourne Jessica Ward |
author_facet | Ally Swank Kadijah Blevins Abby Bourne Jessica Ward |
author_sort | Ally Swank |
collection | DOAJ |
description | Abstract Microplastics (MPs) are widespread in aquatic environments and have become a critical environmental issue in recent years due to their adverse impacts on the physiology, reproduction, and survival of aquatic animals. Exposure to MPs also has the potential to induce sub‐lethal behavioral changes that can affect individual fitness, but these effects are understudied. Many plastic additives introduced during the manufacture of MPs are known endocrine‐disrupting chemicals (EDCs) that mimic the action of natural hormones, alter sexual and competitive behavior, and impair reproductive success in fish. In addition, EDCs and other aquatic contaminants may adhere to MPs in the environment, the latter of which may serve as transport vectors for these compounds (i.e., the vector hypothesis). In this study, we staged territorial contests between control males, and males exposed to virgin MP particles or to MPs previously immersed in one of two environmentally relevant concentrations of 17‐alpha ethinyl estradiol (EE2; 5 ng/L and 25 ng/L) to evaluate the independent and synergistic effects of exposure to MPs and a common environmental estrogen on male–male aggression and competitive territory acquisition in a freshwater fish, Pimephales promelas. Short‐term (30 days) dietary exposure to MPs did not impair the ability of males to successfully compete for and obtain a breeding territory. Overall levels of aggression in control and exposed males were also similar across trial series. These results help to fill a critical knowledge gap regarding the direct and indirect (vector‐borne) effects of MPs on the reproductive behavior of aquatic vertebrates in freshwater systems. |
first_indexed | 2024-04-13T22:43:28Z |
format | Article |
id | doaj.art-286980d269b14ffab9e9ab30a02feaaf |
institution | Directory Open Access Journal |
issn | 2045-7758 |
language | English |
last_indexed | 2024-04-13T22:43:28Z |
publishDate | 2022-02-01 |
publisher | Wiley |
record_format | Article |
series | Ecology and Evolution |
spelling | doaj.art-286980d269b14ffab9e9ab30a02feaaf2022-12-22T02:26:30ZengWileyEcology and Evolution2045-77582022-02-01122n/an/a10.1002/ece3.8620Do microplastics impair male dominance interactions in fish? A test of the vector hypothesisAlly Swank0Kadijah Blevins1Abby Bourne2Jessica Ward3Department of Biology Ball State University Muncie Indiana USADepartment of Biology Ball State University Muncie Indiana USADepartment of Biology Ball State University Muncie Indiana USADepartment of Biology Ball State University Muncie Indiana USAAbstract Microplastics (MPs) are widespread in aquatic environments and have become a critical environmental issue in recent years due to their adverse impacts on the physiology, reproduction, and survival of aquatic animals. Exposure to MPs also has the potential to induce sub‐lethal behavioral changes that can affect individual fitness, but these effects are understudied. Many plastic additives introduced during the manufacture of MPs are known endocrine‐disrupting chemicals (EDCs) that mimic the action of natural hormones, alter sexual and competitive behavior, and impair reproductive success in fish. In addition, EDCs and other aquatic contaminants may adhere to MPs in the environment, the latter of which may serve as transport vectors for these compounds (i.e., the vector hypothesis). In this study, we staged territorial contests between control males, and males exposed to virgin MP particles or to MPs previously immersed in one of two environmentally relevant concentrations of 17‐alpha ethinyl estradiol (EE2; 5 ng/L and 25 ng/L) to evaluate the independent and synergistic effects of exposure to MPs and a common environmental estrogen on male–male aggression and competitive territory acquisition in a freshwater fish, Pimephales promelas. Short‐term (30 days) dietary exposure to MPs did not impair the ability of males to successfully compete for and obtain a breeding territory. Overall levels of aggression in control and exposed males were also similar across trial series. These results help to fill a critical knowledge gap regarding the direct and indirect (vector‐borne) effects of MPs on the reproductive behavior of aquatic vertebrates in freshwater systems.https://doi.org/10.1002/ece3.8620aggressionendocrine‐disrupting chemicalestrogenmale–male competitionmultiple stressorssexual selection |
spellingShingle | Ally Swank Kadijah Blevins Abby Bourne Jessica Ward Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis Ecology and Evolution aggression endocrine‐disrupting chemical estrogen male–male competition multiple stressors sexual selection |
title | Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis |
title_full | Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis |
title_fullStr | Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis |
title_full_unstemmed | Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis |
title_short | Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis |
title_sort | do microplastics impair male dominance interactions in fish a test of the vector hypothesis |
topic | aggression endocrine‐disrupting chemical estrogen male–male competition multiple stressors sexual selection |
url | https://doi.org/10.1002/ece3.8620 |
work_keys_str_mv | AT allyswank domicroplasticsimpairmaledominanceinteractionsinfishatestofthevectorhypothesis AT kadijahblevins domicroplasticsimpairmaledominanceinteractionsinfishatestofthevectorhypothesis AT abbybourne domicroplasticsimpairmaledominanceinteractionsinfishatestofthevectorhypothesis AT jessicaward domicroplasticsimpairmaledominanceinteractionsinfishatestofthevectorhypothesis |