On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements

We revisit two recent methodologies based on Monin–Obukhov Similarity Theory (MOST), the 2D method and Hybrid-Wind (HW), which are aimed at estimation of the Obukhov length, friction velocity and kinematic heat flux within the surface layer. Both methods use wind-speed profile measurements only and...

Full description

Bibliographic Details
Main Authors: Marcos Paulo Araújo da Silva, Andreu Salcedo-Bosch, Francesc Rocadenbosch, Alfredo Peña
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/10/2660
_version_ 1827740169566945280
author Marcos Paulo Araújo da Silva
Andreu Salcedo-Bosch
Francesc Rocadenbosch
Alfredo Peña
author_facet Marcos Paulo Araújo da Silva
Andreu Salcedo-Bosch
Francesc Rocadenbosch
Alfredo Peña
author_sort Marcos Paulo Araújo da Silva
collection DOAJ
description We revisit two recent methodologies based on Monin–Obukhov Similarity Theory (MOST), the 2D method and Hybrid-Wind (HW), which are aimed at estimation of the Obukhov length, friction velocity and kinematic heat flux within the surface layer. Both methods use wind-speed profile measurements only and their comparative performance requires assessment. Synthetic and observational data are used for their quantitative assessment. We also present a procedure to generate synthetic noise-corrupted wind profiles based on estimation of the probability density functions for MOST-related variables (e.g., friction velocity) and the statistics of the noise-corrupting perturbational amplitude found during an 82-day IJmuiden observational campaign. In the observational part of the study, 2D and HW parameter retrievals from floating Doppler wind lidar measurements are compared against those from a reference mast. Overall, the 2D algorithm outperformed the HW in the estimation of all the three parameters above. For instance, when assessing the friction-velocity retrieval performance with reference to sonic anemometers, determination coefficients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mn>2</mn><mi>D</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.77</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mi>H</mi><mi>W</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.33</mn></mrow></semantics></math></inline-formula> were found under unstable atmospheric stability conditions, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mn>2</mn><mi>D</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.81</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mi>H</mi><mi>W</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.07</mn></mrow></semantics></math></inline-formula> under stable conditions, which suggests the 2D algorithm as a prominent method for estimating the above-mentioned surface-layer parameters.
first_indexed 2024-03-11T03:21:11Z
format Article
id doaj.art-28760fc4b77c4f1b84797313be8f14f1
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-11T03:21:11Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-28760fc4b77c4f1b84797313be8f14f12023-11-18T03:08:22ZengMDPI AGRemote Sensing2072-42922023-05-011510266010.3390/rs15102660On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile MeasurementsMarcos Paulo Araújo da Silva0Andreu Salcedo-Bosch1Francesc Rocadenbosch2Alfredo Peña3CommSensLab-UPC, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC), C/ Jordi Girona, 1-3, 08034 Barcelona, SpainCommSensLab-UPC, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC), C/ Jordi Girona, 1-3, 08034 Barcelona, SpainCommSensLab-UPC, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC), C/ Jordi Girona, 1-3, 08034 Barcelona, SpainDTU Wind and Energy Systems, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, DenmarkWe revisit two recent methodologies based on Monin–Obukhov Similarity Theory (MOST), the 2D method and Hybrid-Wind (HW), which are aimed at estimation of the Obukhov length, friction velocity and kinematic heat flux within the surface layer. Both methods use wind-speed profile measurements only and their comparative performance requires assessment. Synthetic and observational data are used for their quantitative assessment. We also present a procedure to generate synthetic noise-corrupted wind profiles based on estimation of the probability density functions for MOST-related variables (e.g., friction velocity) and the statistics of the noise-corrupting perturbational amplitude found during an 82-day IJmuiden observational campaign. In the observational part of the study, 2D and HW parameter retrievals from floating Doppler wind lidar measurements are compared against those from a reference mast. Overall, the 2D algorithm outperformed the HW in the estimation of all the three parameters above. For instance, when assessing the friction-velocity retrieval performance with reference to sonic anemometers, determination coefficients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mn>2</mn><mi>D</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.77</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mi>H</mi><mi>W</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.33</mn></mrow></semantics></math></inline-formula> were found under unstable atmospheric stability conditions, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mn>2</mn><mi>D</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.81</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ρ</mi><mrow><mi>H</mi><mi>W</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>0.07</mn></mrow></semantics></math></inline-formula> under stable conditions, which suggests the 2D algorithm as a prominent method for estimating the above-mentioned surface-layer parameters.https://www.mdpi.com/2072-4292/15/10/2660Obukhov lengthfriction velocityheat fluxwind energyfloating lidarDoppler wind lidar
spellingShingle Marcos Paulo Araújo da Silva
Andreu Salcedo-Bosch
Francesc Rocadenbosch
Alfredo Peña
On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements
Remote Sensing
Obukhov length
friction velocity
heat flux
wind energy
floating lidar
Doppler wind lidar
title On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements
title_full On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements
title_fullStr On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements
title_full_unstemmed On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements
title_short On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements
title_sort on the retrieval of surface layer parameters from lidar wind profile measurements
topic Obukhov length
friction velocity
heat flux
wind energy
floating lidar
Doppler wind lidar
url https://www.mdpi.com/2072-4292/15/10/2660
work_keys_str_mv AT marcospauloaraujodasilva ontheretrievalofsurfacelayerparametersfromlidarwindprofilemeasurements
AT andreusalcedobosch ontheretrievalofsurfacelayerparametersfromlidarwindprofilemeasurements
AT francescrocadenbosch ontheretrievalofsurfacelayerparametersfromlidarwindprofilemeasurements
AT alfredopena ontheretrievalofsurfacelayerparametersfromlidarwindprofilemeasurements