Summary: | We propose a framework for reasoning about unbounded dynamic networks of
infinite-state processes. We propose Constrained Petri Nets (CPN) as generic
models for these networks. They can be seen as Petri nets where tokens
(representing occurrences of processes) are colored by values over some
potentially infinite data domain such as integers, reals, etc. Furthermore, we
define a logic, called CML (colored markings logic), for the description of CPN
configurations. CML is a first-order logic over tokens allowing to reason about
their locations and their colors. Both CPNs and CML are parametrized by a color
logic allowing to express constraints on the colors (data) associated with
tokens. We investigate the decidability of the satisfiability problem of CML
and its applications in the verification of CPNs. We identify a fragment of CML
for which the satisfiability problem is decidable (whenever it is the case for
the underlying color logic), and which is closed under the computations of post
and pre images for CPNs. These results can be used for several kinds of
analysis such as invariance checking, pre-post condition reasoning, and bounded
reachability analysis.
|