Derivation of Vegetation Optical Depth and Water Content in the Source Region of the Yellow River using the FY-3B Microwave Data

This study uses the brightness temperature at the given microwave frequency (18.7 GHz) from the Microwave Radiation Imager (MWRI) on-board the Fengyun-3B (FY-3B) satellite to improve the τ-ω model by considering the radiative contribution from waterbody in the pixels over the wetla...

Full description

Bibliographic Details
Main Authors: Rong Liu, Jun Wen, Xin Wang, Zuoliang Wang, Zhenchao Li, Yan Xie, Li Zhu, Dongpeng Li
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/13/1536
Description
Summary:This study uses the brightness temperature at the given microwave frequency (18.7 GHz) from the Microwave Radiation Imager (MWRI) on-board the Fengyun-3B (FY-3B) satellite to improve the &#964;-&#969; model by considering the radiative contribution from waterbody in the pixels over the wetland of the Yellow River source region, China. In order to retrieve vegetation optical depth (VOD), a dual-polarization slope parameter is defined to express the surface emissivity in the &#964;-&#969; model as the sum of soil emissivity and waterbody emissivity. In the regions with no waterbody, the original &#964;-&#969; model without considering waterbody impact is used to derive VOD. With use of the field observed vegetation water content (VWC) in the source region of the Yellow River during the summer of 2012, a regression relationship between VOD and VWC is established and then the vegetation parameter <i>b</i> is estimated. The relationship is employed to derive the spatial VWC during the entire vegetation growing period. The VOD retrieved is invalid and failed in some part of the study area by using the previous &#964;-&#969; model, while the results from the improved &#964;-&#969; model indicate that the VOD is in the range of 0.20 to 1.20 and the VWC is in the range of 0.20kg/m<sup>2</sup> to 1.40kg/m<sup>2</sup> in the entire source region of the Yellow River in 2012. Both VOD and VWC exhibit a pattern of low values in the west part and high values in the east part. The largest regional variations appear along the Yellow River. The comparison between the remote-sensing-estimated VWC and the ground-measured VWC gives the root mean square error of 0.12kg/m<sup>2</sup>. These assessments reveal that with considering the fractional seasonal wetlands in the source region of the Yellow River, the microwave remote sensing measurements from the FY-3B MWRI can be successfully used to retrieve the VWC in the source region of the Yellow River.
ISSN:2072-4292