On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-Calculus

In this paper, we first establish two right-quantum integral equalities involving a right-quantum derivative and a parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>...

Full description

Bibliographic Details
Main Authors: Ifra Bashir Sial, Sun Mei, Muhammad Aamir Ali, Kamsing Nonlaopon
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/24/3266
_version_ 1797502629867159552
author Ifra Bashir Sial
Sun Mei
Muhammad Aamir Ali
Kamsing Nonlaopon
author_facet Ifra Bashir Sial
Sun Mei
Muhammad Aamir Ali
Kamsing Nonlaopon
author_sort Ifra Bashir Sial
collection DOAJ
description In this paper, we first establish two right-quantum integral equalities involving a right-quantum derivative and a parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><mo> </mo><mfenced separators="" open="[" close="]"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>. Then, we prove modified versions of Simpson’s and Newton’s type inequalities using established equalities for right-quantum differentiable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>α</mi><mo>,</mo><mi>m</mi></mfenced></semantics></math></inline-formula>-convex functions. The newly developed inequalities are also proven to be expansions of comparable inequalities found in the literature.
first_indexed 2024-03-10T03:36:54Z
format Article
id doaj.art-2889e53684564e90bc34743f781a9c6a
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:36:54Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2889e53684564e90bc34743f781a9c6a2023-11-23T09:26:39ZengMDPI AGMathematics2227-73902021-12-01924326610.3390/math9243266On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-CalculusIfra Bashir Sial0Sun Mei1Muhammad Aamir Ali2Kamsing Nonlaopon3School of Mathematics Science, Jiangsu University, Zhenjiang 212114, ChinaSchool of Mathematics Science, Jiangsu University, Zhenjiang 212114, ChinaJiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaDepartment of Mathematics, Faculty of Science and Arts, Khon Kaen University, Khon Kaen 40002, ThailandIn this paper, we first establish two right-quantum integral equalities involving a right-quantum derivative and a parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><mo> </mo><mfenced separators="" open="[" close="]"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>. Then, we prove modified versions of Simpson’s and Newton’s type inequalities using established equalities for right-quantum differentiable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>α</mi><mo>,</mo><mi>m</mi></mfenced></semantics></math></inline-formula>-convex functions. The newly developed inequalities are also proven to be expansions of comparable inequalities found in the literature.https://www.mdpi.com/2227-7390/9/24/3266Simpson’s inequalitiesNewton’s inequalitiesquantum calculus(<i>α</i>, <i>m</i>)-convex functions
spellingShingle Ifra Bashir Sial
Sun Mei
Muhammad Aamir Ali
Kamsing Nonlaopon
On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-Calculus
Mathematics
Simpson’s inequalities
Newton’s inequalities
quantum calculus
(<i>α</i>, <i>m</i>)-convex functions
title On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-Calculus
title_full On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-Calculus
title_fullStr On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-Calculus
title_full_unstemmed On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-Calculus
title_short On Some Generalized Simpson’s and Newton’s Inequalities for (<i>α</i>, <i>m</i>)-Convex Functions in <i>q</i>-Calculus
title_sort on some generalized simpson s and newton s inequalities for i α i i m i convex functions in i q i calculus
topic Simpson’s inequalities
Newton’s inequalities
quantum calculus
(<i>α</i>, <i>m</i>)-convex functions
url https://www.mdpi.com/2227-7390/9/24/3266
work_keys_str_mv AT ifrabashirsial onsomegeneralizedsimpsonsandnewtonsinequalitiesforiaiimiconvexfunctionsiniqicalculus
AT sunmei onsomegeneralizedsimpsonsandnewtonsinequalitiesforiaiimiconvexfunctionsiniqicalculus
AT muhammadaamirali onsomegeneralizedsimpsonsandnewtonsinequalitiesforiaiimiconvexfunctionsiniqicalculus
AT kamsingnonlaopon onsomegeneralizedsimpsonsandnewtonsinequalitiesforiaiimiconvexfunctionsiniqicalculus