A Proof of the Extended Delta Conjecture

We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $\Delta _{h_l}\Delta ' _{e_k} e_{n}$ , where $\Delta ' _{e_k}$ and $\Delta _{h_l}$ are Macdonald eigenoperators and $e_n$ is an elementary symmetric function. We act...

Full description

Bibliographic Details
Main Authors: Jonah Blasiak, Mark Haiman, Jennifer Morse, Anna Pun, George H. Seelinger
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Forum of Mathematics, Pi
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050508623000033/type/journal_article
_version_ 1811156288603684864
author Jonah Blasiak
Mark Haiman
Jennifer Morse
Anna Pun
George H. Seelinger
author_facet Jonah Blasiak
Mark Haiman
Jennifer Morse
Anna Pun
George H. Seelinger
author_sort Jonah Blasiak
collection DOAJ
description We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $\Delta _{h_l}\Delta ' _{e_k} e_{n}$ , where $\Delta ' _{e_k}$ and $\Delta _{h_l}$ are Macdonald eigenoperators and $e_n$ is an elementary symmetric function. We actually prove a stronger identity of infinite series of $\operatorname {\mathrm {GL}}_m$ characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.
first_indexed 2024-04-10T04:47:59Z
format Article
id doaj.art-28c00e181f8d4383ae1a1bfb84695bd2
institution Directory Open Access Journal
issn 2050-5086
language English
last_indexed 2024-04-10T04:47:59Z
publishDate 2023-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Pi
spelling doaj.art-28c00e181f8d4383ae1a1bfb84695bd22023-03-09T12:34:19ZengCambridge University PressForum of Mathematics, Pi2050-50862023-01-011110.1017/fmp.2023.3A Proof of the Extended Delta ConjectureJonah Blasiak0Mark Haiman1Jennifer Morse2Anna Pun3https://orcid.org/0000-0001-5279-3936George H. Seelinger4https://orcid.org/0000-0003-3800-3840Dept. of Mathematics, Drexel University, Philadelphia, PA; E-mail:Dept. of Mathematics, University of California, Berkeley, CADept. of Mathematics, University of Virginia, Charlottesville, VA; E-mail:Dept. of Mathematics, CUNY-Baruch College, New York, NY; E-mail:Dept. of Mathematics, University of Michigan, Ann Arbor, MI; E-mail:We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $\Delta _{h_l}\Delta ' _{e_k} e_{n}$ , where $\Delta ' _{e_k}$ and $\Delta _{h_l}$ are Macdonald eigenoperators and $e_n$ is an elementary symmetric function. We actually prove a stronger identity of infinite series of $\operatorname {\mathrm {GL}}_m$ characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.https://www.cambridge.org/core/product/identifier/S2050508623000033/type/journal_article05E0516T30
spellingShingle Jonah Blasiak
Mark Haiman
Jennifer Morse
Anna Pun
George H. Seelinger
A Proof of the Extended Delta Conjecture
Forum of Mathematics, Pi
05E05
16T30
title A Proof of the Extended Delta Conjecture
title_full A Proof of the Extended Delta Conjecture
title_fullStr A Proof of the Extended Delta Conjecture
title_full_unstemmed A Proof of the Extended Delta Conjecture
title_short A Proof of the Extended Delta Conjecture
title_sort proof of the extended delta conjecture
topic 05E05
16T30
url https://www.cambridge.org/core/product/identifier/S2050508623000033/type/journal_article
work_keys_str_mv AT jonahblasiak aproofoftheextendeddeltaconjecture
AT markhaiman aproofoftheextendeddeltaconjecture
AT jennifermorse aproofoftheextendeddeltaconjecture
AT annapun aproofoftheextendeddeltaconjecture
AT georgehseelinger aproofoftheextendeddeltaconjecture
AT jonahblasiak proofoftheextendeddeltaconjecture
AT markhaiman proofoftheextendeddeltaconjecture
AT jennifermorse proofoftheextendeddeltaconjecture
AT annapun proofoftheextendeddeltaconjecture
AT georgehseelinger proofoftheextendeddeltaconjecture