Evaporative Fluxes and Surface Soil Moisture Retrievals in a Mediterranean Setting from Sentinel-3 and the “Simplified Triangle”

Earth Observation (EO) makes it possible to obtain information on key parameters characterizing interactions among Earth’s system components, such as evaporative fraction (EF) and surface soil moisture (SSM). Notably, techniques utilizing EO data of land surface temperature (Ts) and vegetation index...

Full description

Bibliographic Details
Main Authors: George P. Petropoulos, Ionut Sandric, Dionissios Hristopulos, Toby Nahum Carlson
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/19/3192
Description
Summary:Earth Observation (EO) makes it possible to obtain information on key parameters characterizing interactions among Earth’s system components, such as evaporative fraction (EF) and surface soil moisture (SSM). Notably, techniques utilizing EO data of land surface temperature (Ts) and vegetation index (VI) have shown promise in this regard. The present study investigates, for the first time, the accuracy of one such technique, known as the “simplified triangle”, using Sentinel-3 EO data, acquired for 44 days in 2018 at three savannah FLUXNET sites in Spain. The technique was found to be able to predict both EF and SSM with reasonable accuracy when compared to collocated ground measurements. Comparisons performed for all days together showed relatively low Root Mean square Difference (RMSD) for both EF (0.191) and SSM (0.012 cm<sup>3</sup> cm<sup>−3</sup>) and good correlation coefficients (<i>R</i>) of 0.721 and 0.577, respectively. Both EF and SSM were also largely in agreement with land cover and seasonal variability. The present study comprises the first detailed assessment of the “simplified triangle”, in this case, using Sentinel-3 data and in a Mediterranean setting. Findings, albeit preliminary, are of significant value regarding the use of the investigated technique as a tool of environmental management, and towards ongoing, worldwide efforts aiming at developing operationally relevant products based on the Ts/VI feature space and EO data based on new satellites such as Sentinel-3.
ISSN:2072-4292