Discovery of Novel Human Gene Regulatory Modules from Gene Co-expression and Promoter Motif Analysis

Abstract Deciphering gene regulatory networks requires identification of gene expression modules. We describe a novel bottom-up approach to identify gene modules regulated by cis-regulatory motifs from a human gene co-expression network. Target genes of a cis-regulatory motif were identified from th...

Full description

Bibliographic Details
Main Authors: Shisong Ma, Michael Snyder, Savithramma P. Dinesh-Kumar
Format: Article
Language:English
Published: Nature Portfolio 2017-07-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-05705-2
Description
Summary:Abstract Deciphering gene regulatory networks requires identification of gene expression modules. We describe a novel bottom-up approach to identify gene modules regulated by cis-regulatory motifs from a human gene co-expression network. Target genes of a cis-regulatory motif were identified from the network via the motif’s enrichment or biased distribution towards transcription start sites in the promoters of co-expressed genes. A gene sub-network containing the target genes was extracted and used to derive gene modules. The analysis revealed known and novel gene modules regulated by the NF-Y motif. The binding of NF-Y proteins to these modules’ gene promoters were verified using ENCODE ChIP-Seq data. The analyses also identified 8,048 Sp1 motif target genes, interestingly many of which were not detected by ENCODE ChIP-Seq. These target genes assemble into house-keeping, tissues-specific developmental, and immune response modules. Integration of Sp1 modules with genomic and epigenomic data indicates epigenetic control of Sp1 targets’ expression in a cell/tissue specific manner. Finally, known and novel target genes and modules regulated by the YY1, RFX1, IRF1, and 34 other motifs were also identified. The study described here provides a valuable resource to understand transcriptional regulation of various human developmental, disease, or immunity pathways.
ISSN:2045-2322