Effects of Co-Inoculating <i>Saccharomyces</i> spp. with <i>Bradyrhizobium japonicum</i> on Atmospheric Nitrogen Fixation in Soybeans (<i>Glycine max</i> (L.))

Crop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conduct...

Full description

Bibliographic Details
Main Authors: Obey Kudakwashe Zveushe, Victor Resco de Dios, Hengxing Zhang, Fang Zeng, Siqin Liu, Songrong Shen, Qianlin Kang, Yazhen Zhang, Miao Huang, Ahmed Sarfaraz, Matina Prajapati, Lei Zhou, Wei Zhang, Ying Han, Faqin Dong
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/12/3/681
Description
Summary:Crop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conducted a greenhouse pot experiment following a completely randomized blocked design to elucidate the influence of co-inoculating N-fixing bacteria (<i>Bradyrhizobium japonicum</i>) and PSMs (<i>Saccharomyces cerevisiae</i> and <i>Saccharomyces exiguus</i>) on atmospheric N<sub>2</sub>-fixation, growth, and yield. The results indicate a significant influence of interaction on Indole-3-acetic acid production, P solubilization, seedling germination, and growth. It was also found that atmospheric N<sub>2</sub>-fixation, nodule number per plant, nodule dry weight, straw, and root dry weight per plant at different growth stages were significantly increased under dual inoculation treatments relative to single inoculation or no inoculation treatment. Increased seed yield and N and P accumulation were also noticed under co-inoculation treatments. Soil available N was highest under sole bacterial inoculation and lowest under the control treatment, while soil available P was highest under co-inoculation treatments and lowest under the control treatment. We demonstrated that the co-inoculation of N-fixing bacteria and PSMs enhances P bioavailability and atmospheric N<sub>2</sub>-fixation in soybeans leading to improved soil fertility, raising crop yields, and promoting sustainable agriculture.
ISSN:2223-7747