Gravity = Yang–Mills

This essay’s title is justified by discussing a class of Yang–Mills-type theories of which standard Yang–Mills theories are special cases but which is broad enough to include gravity as a double field theory. We use the framework of homotopy algebras, where conventional Yang–Mills theory is the tens...

Full description

Bibliographic Details
Main Authors: Roberto Bonezzi, Christoph Chiaffrino, Felipe Díaz-Jaramillo, Olaf Hohm
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/11/2062
_version_ 1797457598992089088
author Roberto Bonezzi
Christoph Chiaffrino
Felipe Díaz-Jaramillo
Olaf Hohm
author_facet Roberto Bonezzi
Christoph Chiaffrino
Felipe Díaz-Jaramillo
Olaf Hohm
author_sort Roberto Bonezzi
collection DOAJ
description This essay’s title is justified by discussing a class of Yang–Mills-type theories of which standard Yang–Mills theories are special cases but which is broad enough to include gravity as a double field theory. We use the framework of homotopy algebras, where conventional Yang–Mills theory is the tensor product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">K</mi><mo>⊗</mo><mi mathvariant="fraktur">g</mi></mrow></semantics></math></inline-formula> of a ‘kinematic’ algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">K</mi></semantics></math></inline-formula> with a color Lie algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">g</mi></semantics></math></inline-formula>. The larger class of Yang–Mills-type theories are given by the tensor product of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">K</mi></semantics></math></inline-formula> with more general Lie-type algebras, of which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">K</mi></semantics></math></inline-formula> itself is an example, up to anomalies that can be canceled for the tensor product with a second copy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="script">K</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula>. Gravity is then given by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">K</mi><mo>⊗</mo><mover accent="true"><mi mathvariant="script">K</mi><mo stretchy="false">¯</mo></mover></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T16:24:20Z
format Article
id doaj.art-2908b27d84304d9c9d1a42d0285b281b
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T16:24:20Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-2908b27d84304d9c9d1a42d0285b281b2023-11-24T15:08:57ZengMDPI AGSymmetry2073-89942023-11-011511206210.3390/sym15112062Gravity = Yang–MillsRoberto Bonezzi0Christoph Chiaffrino1Felipe Díaz-Jaramillo2Olaf Hohm3Institute for Physics, Humboldt University Berlin, Zum Großen Windkanal 6, D-12489 Berlin, GermanyInstitute for Physics, Humboldt University Berlin, Zum Großen Windkanal 6, D-12489 Berlin, GermanyInstitute for Physics, Humboldt University Berlin, Zum Großen Windkanal 6, D-12489 Berlin, GermanyInstitute for Physics, Humboldt University Berlin, Zum Großen Windkanal 6, D-12489 Berlin, GermanyThis essay’s title is justified by discussing a class of Yang–Mills-type theories of which standard Yang–Mills theories are special cases but which is broad enough to include gravity as a double field theory. We use the framework of homotopy algebras, where conventional Yang–Mills theory is the tensor product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">K</mi><mo>⊗</mo><mi mathvariant="fraktur">g</mi></mrow></semantics></math></inline-formula> of a ‘kinematic’ algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">K</mi></semantics></math></inline-formula> with a color Lie algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">g</mi></semantics></math></inline-formula>. The larger class of Yang–Mills-type theories are given by the tensor product of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">K</mi></semantics></math></inline-formula> with more general Lie-type algebras, of which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">K</mi></semantics></math></inline-formula> itself is an example, up to anomalies that can be canceled for the tensor product with a second copy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="script">K</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula>. Gravity is then given by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">K</mi><mo>⊗</mo><mover accent="true"><mi mathvariant="script">K</mi><mo stretchy="false">¯</mo></mover></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-8994/15/11/2062double copyhomotopy algebrasdouble field theory
spellingShingle Roberto Bonezzi
Christoph Chiaffrino
Felipe Díaz-Jaramillo
Olaf Hohm
Gravity = Yang–Mills
Symmetry
double copy
homotopy algebras
double field theory
title Gravity = Yang–Mills
title_full Gravity = Yang–Mills
title_fullStr Gravity = Yang–Mills
title_full_unstemmed Gravity = Yang–Mills
title_short Gravity = Yang–Mills
title_sort gravity yang mills
topic double copy
homotopy algebras
double field theory
url https://www.mdpi.com/2073-8994/15/11/2062
work_keys_str_mv AT robertobonezzi gravityyangmills
AT christophchiaffrino gravityyangmills
AT felipediazjaramillo gravityyangmills
AT olafhohm gravityyangmills