Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol
Flexible polyurethane (PU) foams are widely used in automotive industries as sound absorbing materials because their porous structure is beneficial for absorbing sound waves. With growing concerns about environment pollution, many studies have been conducted to investigate the environmental impact o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-07-01
|
Series: | Polymer Testing |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0142941823001496 |
_version_ | 1797802225161994240 |
---|---|
author | Jungha Lee Jung Hyeun Kim |
author_facet | Jungha Lee Jung Hyeun Kim |
author_sort | Jungha Lee |
collection | DOAJ |
description | Flexible polyurethane (PU) foams are widely used in automotive industries as sound absorbing materials because their porous structure is beneficial for absorbing sound waves. With growing concerns about environment pollution, many studies have been conducted to investigate the environmental impact of the PU foams fabricated with bio-derived materials instead of using petroleum-based sources. In this study, castor oil-based bio-polyol and two types of gelling catalysts (amine and tin) were applied in synthesis of the PU foams, and the sound absorption, compression strength, and volatile organic compounds (VOCs) emission were examined. Increasing the bio-polyol content and applying a tin type catalyst decreased the cavity and pore sizes about 40%, resulted in high sound absorption (acoustic activity: 0.77 and noise reduction coefficient: 0.41) and compression strength (26.27 kPa). Additionally, the application of bio-polyol also reduced the VOCs emissions from the foam degradation. Thus, applying the bio-derived polyol is promising for reducing environmental issues in various industrial applications. |
first_indexed | 2024-03-13T05:02:52Z |
format | Article |
id | doaj.art-291753bba25d48aebcf8b47bd8727609 |
institution | Directory Open Access Journal |
issn | 0142-9418 |
language | English |
last_indexed | 2024-03-13T05:02:52Z |
publishDate | 2023-07-01 |
publisher | Elsevier |
record_format | Article |
series | Polymer Testing |
spelling | doaj.art-291753bba25d48aebcf8b47bd87276092023-06-17T05:17:32ZengElsevierPolymer Testing0142-94182023-07-01124108069Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyolJungha Lee0Jung Hyeun Kim1Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South KoreaCorresponding author.; Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South KoreaFlexible polyurethane (PU) foams are widely used in automotive industries as sound absorbing materials because their porous structure is beneficial for absorbing sound waves. With growing concerns about environment pollution, many studies have been conducted to investigate the environmental impact of the PU foams fabricated with bio-derived materials instead of using petroleum-based sources. In this study, castor oil-based bio-polyol and two types of gelling catalysts (amine and tin) were applied in synthesis of the PU foams, and the sound absorption, compression strength, and volatile organic compounds (VOCs) emission were examined. Increasing the bio-polyol content and applying a tin type catalyst decreased the cavity and pore sizes about 40%, resulted in high sound absorption (acoustic activity: 0.77 and noise reduction coefficient: 0.41) and compression strength (26.27 kPa). Additionally, the application of bio-polyol also reduced the VOCs emissions from the foam degradation. Thus, applying the bio-derived polyol is promising for reducing environmental issues in various industrial applications.http://www.sciencedirect.com/science/article/pii/S0142941823001496Polyurethane foamCastor oilBio-polyolSound absorptionGelling catalyst |
spellingShingle | Jungha Lee Jung Hyeun Kim Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol Polymer Testing Polyurethane foam Castor oil Bio-polyol Sound absorption Gelling catalyst |
title | Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol |
title_full | Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol |
title_fullStr | Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol |
title_full_unstemmed | Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol |
title_short | Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol |
title_sort | performance evaluations of flexible polyurethane foams manufactured with castor oil based bio polyol |
topic | Polyurethane foam Castor oil Bio-polyol Sound absorption Gelling catalyst |
url | http://www.sciencedirect.com/science/article/pii/S0142941823001496 |
work_keys_str_mv | AT junghalee performanceevaluationsofflexiblepolyurethanefoamsmanufacturedwithcastoroilbasedbiopolyol AT junghyeunkim performanceevaluationsofflexiblepolyurethanefoamsmanufacturedwithcastoroilbasedbiopolyol |