A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters

Our study introduces a new machine learning algorithm for estimating 3D cumulative radial profiles of total and gas mass in galaxy clusters from thermal Sunyaev-Zel’dovich (SZ) effect maps. We generate mock images from 2522 simulated clusters, employing an autoencoder and random forest in our approa...

Full description

Bibliographic Details
Main Authors: Ferragamo A., de Andres D., Sbriglio A., Cui W., De Petris M., Yepes G., Dupuis R., Jarraya M., Lahouli I., De Luca F., Gianfagna G., Rasia E.
Format: Article
Language:English
Published: EDP Sciences 2024-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2024/03/epjconf_mmUniverse2023_00019.pdf
_version_ 1797235238019006464
author Ferragamo A.
de Andres D.
Sbriglio A.
Cui W.
De Petris M.
Yepes G.
Dupuis R.
Jarraya M.
Lahouli I.
De Luca F.
Gianfagna G.
Rasia E.
author_facet Ferragamo A.
de Andres D.
Sbriglio A.
Cui W.
De Petris M.
Yepes G.
Dupuis R.
Jarraya M.
Lahouli I.
De Luca F.
Gianfagna G.
Rasia E.
author_sort Ferragamo A.
collection DOAJ
description Our study introduces a new machine learning algorithm for estimating 3D cumulative radial profiles of total and gas mass in galaxy clusters from thermal Sunyaev-Zel’dovich (SZ) effect maps. We generate mock images from 2522 simulated clusters, employing an autoencoder and random forest in our approach. Notably, our model makes no prior assumptions about hydrostatic equilibrium. Our results indicate that the model successfully reconstructs unbiased total and gas mass profiles, with a scatter of approximately 10%. We analyse clusters in various dynamical states and mass ranges, finding that our method’s accuracy and precision are consistent. We verify the capabilities of our model by comparing it with the hydrostatic equilibrium technique, showing that it accurately recovers total mass profiles without any bias.
first_indexed 2024-04-24T16:44:47Z
format Article
id doaj.art-292badd9b1ae450f8af7b1dd18a23d5e
institution Directory Open Access Journal
issn 2100-014X
language English
last_indexed 2024-04-24T16:44:47Z
publishDate 2024-01-01
publisher EDP Sciences
record_format Article
series EPJ Web of Conferences
spelling doaj.art-292badd9b1ae450f8af7b1dd18a23d5e2024-03-29T08:31:00ZengEDP SciencesEPJ Web of Conferences2100-014X2024-01-012930001910.1051/epjconf/202429300019epjconf_mmUniverse2023_00019A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clustersFerragamo A.0de Andres D.1Sbriglio A.2Cui W.3De Petris M.4Yepes G.5Dupuis R.6Jarraya M.7Lahouli I.8De Luca F.9Gianfagna G.10Rasia E.11Instituto de Astrofísica de Canarias (IAC)Departamento de Física Téorica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de MadridDipartimento di Fisica, Sapienza Universitá di RomaDepartamento de Física Téorica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de MadridDipartimento di Fisica, Sapienza Universitá di RomaDepartamento de Física Téorica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de MadridEURANOVAEURANOVAEURANOVADipartimento di Fisica, Università di Roma Tor VergataDipartimento di Fisica, Sapienza Universitá di RomaIFPU - Institute for Fundamental Physics of the UniverseOur study introduces a new machine learning algorithm for estimating 3D cumulative radial profiles of total and gas mass in galaxy clusters from thermal Sunyaev-Zel’dovich (SZ) effect maps. We generate mock images from 2522 simulated clusters, employing an autoencoder and random forest in our approach. Notably, our model makes no prior assumptions about hydrostatic equilibrium. Our results indicate that the model successfully reconstructs unbiased total and gas mass profiles, with a scatter of approximately 10%. We analyse clusters in various dynamical states and mass ranges, finding that our method’s accuracy and precision are consistent. We verify the capabilities of our model by comparing it with the hydrostatic equilibrium technique, showing that it accurately recovers total mass profiles without any bias.https://www.epj-conferences.org/articles/epjconf/pdf/2024/03/epjconf_mmUniverse2023_00019.pdf
spellingShingle Ferragamo A.
de Andres D.
Sbriglio A.
Cui W.
De Petris M.
Yepes G.
Dupuis R.
Jarraya M.
Lahouli I.
De Luca F.
Gianfagna G.
Rasia E.
A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters
EPJ Web of Conferences
title A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters
title_full A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters
title_fullStr A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters
title_full_unstemmed A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters
title_short A machine learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel’dovich maps with The Three Hundred clusters
title_sort machine learning method to infer clusters of galaxies mass radial profiles from mock sunyaev zel dovich maps with the three hundred clusters
url https://www.epj-conferences.org/articles/epjconf/pdf/2024/03/epjconf_mmUniverse2023_00019.pdf
work_keys_str_mv AT ferragamoa amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT deandresd amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT sbriglioa amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT cuiw amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT depetrism amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT yepesg amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT dupuisr amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT jarrayam amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT lahoulii amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT delucaf amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT gianfagnag amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT rasiae amachinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT ferragamoa machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT deandresd machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT sbriglioa machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT cuiw machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT depetrism machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT yepesg machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT dupuisr machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT jarrayam machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT lahoulii machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT delucaf machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT gianfagnag machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters
AT rasiae machinelearningmethodtoinferclustersofgalaxiesmassradialprofilesfrommocksunyaevzeldovichmapswiththethreehundredclusters