Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part A

In this article, we present the scientific outcomes of the 2019 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2019 Contest addressed the problem of 3-D reconstruction and 3-D semantic understanding on a...

Full description

Bibliographic Details
Main Authors: Saket Kunwar, Hongyu Chen, Manhui Lin, Hongyan Zhang, Pablo D'Angelo, Daniele Cerra, Seyed Majid Azimi, Myron Brown, Gregory Hager, Naoto Yokoya, Ronny Hansch, Bertrand Le Saux
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9229514/
_version_ 1831540647845167104
author Saket Kunwar
Hongyu Chen
Manhui Lin
Hongyan Zhang
Pablo D'Angelo
Daniele Cerra
Seyed Majid Azimi
Myron Brown
Gregory Hager
Naoto Yokoya
Ronny Hansch
Bertrand Le Saux
author_facet Saket Kunwar
Hongyu Chen
Manhui Lin
Hongyan Zhang
Pablo D'Angelo
Daniele Cerra
Seyed Majid Azimi
Myron Brown
Gregory Hager
Naoto Yokoya
Ronny Hansch
Bertrand Le Saux
author_sort Saket Kunwar
collection DOAJ
description In this article, we present the scientific outcomes of the 2019 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2019 Contest addressed the problem of 3-D reconstruction and 3-D semantic understanding on a large scale. Several competitions were organized to assess specific issues, such as elevation estimation and semantic mapping from a single view, two views, or multiple views. In Part A, we report the results of the best-performing approaches for semantic 3-D reconstruction according to these various setups, whereas 3-D point cloud semantic mapping is discussed in Part B.
first_indexed 2024-12-17T00:02:37Z
format Article
id doaj.art-2935c93976974e42b44459b15b005e5c
institution Directory Open Access Journal
issn 2151-1535
language English
last_indexed 2024-12-17T00:02:37Z
publishDate 2021-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj.art-2935c93976974e42b44459b15b005e5c2022-12-21T22:11:02ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing2151-15352021-01-011492293510.1109/JSTARS.2020.30322219229514Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part ASaket Kunwar0Hongyu Chen1Manhui Lin2Hongyan Zhang3https://orcid.org/0000-0002-7894-5755Pablo D'Angelo4https://orcid.org/0000-0001-8541-3856Daniele Cerra5https://orcid.org/0000-0003-2984-8315Seyed Majid Azimi6https://orcid.org/0000-0002-6084-2272Myron Brown7Gregory Hager8https://orcid.org/0000-0002-6662-9763Naoto Yokoya9https://orcid.org/0000-0002-7321-4590Ronny Hansch10https://orcid.org/0000-0002-2936-6765Bertrand Le Saux11https://orcid.org/0000-0001-7162-6746NestAI, Kathmandu, NepalState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, ChinaGerman Aerospace Center, Weßling, GermanyGerman Aerospace Center, Weßling, GermanyGerman Aerospace Center, Weßling, GermanyJohns Hopkins University Applied Physics Laboratory, Laurel, MD, USAJohns Hopkins University, Baltimore, MD, USAGraduate School of Frontier Sciences, The University of Tokyo, Chiba, JapanGerman Aerospace Center, Weßling, GermanyΦ-Lab, ESA Centre for Earth Observation, Frascati, ItalyIn this article, we present the scientific outcomes of the 2019 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2019 Contest addressed the problem of 3-D reconstruction and 3-D semantic understanding on a large scale. Several competitions were organized to assess specific issues, such as elevation estimation and semantic mapping from a single view, two views, or multiple views. In Part A, we report the results of the best-performing approaches for semantic 3-D reconstruction according to these various setups, whereas 3-D point cloud semantic mapping is discussed in Part B.https://ieeexplore.ieee.org/document/9229514/Classificationconvolutional neural network (CNN)Data Fusion Contest (DFC)deep learningelevation modelheight estimation
spellingShingle Saket Kunwar
Hongyu Chen
Manhui Lin
Hongyan Zhang
Pablo D'Angelo
Daniele Cerra
Seyed Majid Azimi
Myron Brown
Gregory Hager
Naoto Yokoya
Ronny Hansch
Bertrand Le Saux
Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part A
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Classification
convolutional neural network (CNN)
Data Fusion Contest (DFC)
deep learning
elevation model
height estimation
title Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part A
title_full Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part A
title_fullStr Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part A
title_full_unstemmed Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part A
title_short Large-Scale Semantic 3-D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest—Part A
title_sort large scale semantic 3 d reconstruction outcome of the 2019 ieee grss data fusion contest x2014 part a
topic Classification
convolutional neural network (CNN)
Data Fusion Contest (DFC)
deep learning
elevation model
height estimation
url https://ieeexplore.ieee.org/document/9229514/
work_keys_str_mv AT saketkunwar largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT hongyuchen largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT manhuilin largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT hongyanzhang largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT pablodangelo largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT danielecerra largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT seyedmajidazimi largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT myronbrown largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT gregoryhager largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT naotoyokoya largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT ronnyhansch largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta
AT bertrandlesaux largescalesemantic3dreconstructionoutcomeofthe2019ieeegrssdatafusioncontestx2014parta