Experimental Study on Fatigue Damage of Drilling Tool Materials Based on Magnetic Memory Detection

In drilling engineering, the cost of drilling tool fracture is enormous, and studying the fatigue failure process of drilling tools has practical significance. This paper uses metal magnetic memory detection technology to design and conduct fatigue damage tests on typical drilling tool material 42Cr...

Full description

Bibliographic Details
Main Authors: Yingming He, Qilong Xue, Weiguo Hai, Xuesong Xing, Xudong Wu, Xing Fu
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/11/7/701
Description
Summary:In drilling engineering, the cost of drilling tool fracture is enormous, and studying the fatigue failure process of drilling tools has practical significance. This paper uses metal magnetic memory detection technology to design and conduct fatigue damage tests on typical drilling tool material 42CrMo specimens under tensile, torsional, compressive, tensile, compressive, and torsional dynamic loading conditions. By analyzing the changes in the tangential component H<sub>p</sub>(<i>x</i>) and gradient value K of the magnetic memory signal under different load conditions with the number of loading times, the process of fatigue failure of the specimens and the trend of changes in the magnetic memory signal in local stress concentration areas are explored. The characteristic parameters of fatigue damage based on magnetic memory detection were extracted and the critical point at which fatigue damage leads to crack initiation was inferred. This confirms that metal magnetic memory testing technology is an effective means of analyzing the fatigue damage process of drilling tools and provides a certain reference for formulating judgment standards for drilling tool maintenance on site.
ISSN:2075-1702