Resveratrol Reverts Tolerance and Restores Susceptibility to Chlorhexidine and Benzalkonium in Gram-Negative Bacteria, Gram-Positive Bacteria and Yeasts

The spread of microorganisms causing health-care associated infection (HAI) is contributed to by their intrinsic tolerance to a variety of biocides, used as antiseptics or disinfectants. The natural monomeric stilbenoid resveratrol (RV) is able to modulate the susceptibility to the chlorhexidine dig...

Full description

Bibliographic Details
Main Authors: Antonella Migliaccio, Maria Stabile, Maria Bagattini, Maria Triassi, Rita Berisio, Eliana De Gregorio, Raffaele Zarrilli
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Antibiotics
Subjects:
Online Access:https://www.mdpi.com/2079-6382/11/7/961
Description
Summary:The spread of microorganisms causing health-care associated infection (HAI) is contributed to by their intrinsic tolerance to a variety of biocides, used as antiseptics or disinfectants. The natural monomeric stilbenoid resveratrol (RV) is able to modulate the susceptibility to the chlorhexidine digluconate (CHX) biocide in <i>Acinetobacter baumannii</i>. In this study, a panel of reference strains and clinical isolates of Gram-negative bacteria, Gram-positive bacteria and yeasts were analyzed for susceptibility to CHX and benzalkonium chloride (BZK) and found to be tolerant to one or both biocides. The carbonyl cyanide m-chlorophenylhydrazine protonophore (CCCP) efflux pump inhibitor reduced the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CHX and BZK in the majority of strains. RV reduced dose-dependently MIC and MBC of CHX and BZK biocides when used as single agents or in combination in all analyzed strains, but not CHX MIC and MBC in <i>Pseudomonas aeruginosa</i>, <i>Candida albicans</i>, <i>Klebsiella pneumoniae</i>, <i>Stenotrophomonas maltophilia</i> and <i>Burkholderia</i> spp. strains. In conclusion, RV reverts tolerance and restores susceptibility to CHX and BZK in the majority of microorganisms responsible for HAI. These results indicates that the combination of RV, CHX and BZK may represent a useful strategy to maintain susceptibility to biocides in several nosocomial pathogens.
ISSN:2079-6382