Eigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset

‎‎Set X = { M11‎, ‎M12‎, ‎M22‎, ‎M23‎, ‎M24‎, ‎Zn‎, ‎T4n‎, ‎SD8n‎, ‎Sz(q)‎, ‎G2(q)‎, ‎V8n}‎, where M11‎, M12‎, M22‎, ‎M23‎, ‎M24 are Mathieu groups and Zn‎, T4n‎, SD8n‎, ‎Sz(q)‎, G2(q) and V8n denote the cyclic‎, ‎dicyclic‎, ‎semi-dihedral‎, ‎Suzuki‎, ‎Ree and a group of order 8n presented by      ...

Full description

Bibliographic Details
Main Author: Maryam Jalali-Rad
Format: Article
Language:English
Published: University of Kashan 2017-12-01
Series:Mathematics Interdisciplinary Research
Subjects:
Online Access:https://mir.kashanu.ac.ir/article_53999_50a22096d7b267c4ef41bd53e9f89c1e.pdf
Description
Summary:‎‎Set X = { M11‎, ‎M12‎, ‎M22‎, ‎M23‎, ‎M24‎, ‎Zn‎, ‎T4n‎, ‎SD8n‎, ‎Sz(q)‎, ‎G2(q)‎, ‎V8n}‎, where M11‎, M12‎, M22‎, ‎M23‎, ‎M24 are Mathieu groups and Zn‎, T4n‎, SD8n‎, ‎Sz(q)‎, G2(q) and V8n denote the cyclic‎, ‎dicyclic‎, ‎semi-dihedral‎, ‎Suzuki‎, ‎Ree and a group of order 8n presented by                                      V8n = < a‎, ‎b | a2n = b4 = e‎, ‎ aba = b-1‎, ‎ab-1a = b>,respectively‎. ‎In this paper‎, ‎we compute all eigenvalues of Cay(G,T)‎, ‎where G \in X and T is minimal‎, ‎second minimal‎, ‎maximal or second maximal normal subset of G\{e} with respect to its size‎. ‎In the case that S is a minimal normal subset of G\{e}‎, ‎the summation of the absolute value of eigenvalues‎, ‎energy of the Cayley graph‎, ‎are evaluated‎.
ISSN:2476-4965