The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1

The bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 H i -selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields at z ≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and we...

Full description

Bibliographic Details
Main Authors: Michelle A. Berg, Nicolas Lehner, J. Christopher Howk, John M. O’Meara, Joop Schaye, Lorrie A. Straka, Kathy L. Cooksey, Todd M. Tripp, J. Xavier Prochaska, Benjamin D. Oppenheimer, Sean D. Johnson, Sowgat Muzahid, Rongmon Bordoloi, Jessica K. Werk, Andrew J. Fox, Neal Katz, Martin Wendt, Molly S. Peeples, Joseph Ribaudo, Jason Tumlinson
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acb047
_version_ 1797695753383051264
author Michelle A. Berg
Nicolas Lehner
J. Christopher Howk
John M. O’Meara
Joop Schaye
Lorrie A. Straka
Kathy L. Cooksey
Todd M. Tripp
J. Xavier Prochaska
Benjamin D. Oppenheimer
Sean D. Johnson
Sowgat Muzahid
Rongmon Bordoloi
Jessica K. Werk
Andrew J. Fox
Neal Katz
Martin Wendt
Molly S. Peeples
Joseph Ribaudo
Jason Tumlinson
author_facet Michelle A. Berg
Nicolas Lehner
J. Christopher Howk
John M. O’Meara
Joop Schaye
Lorrie A. Straka
Kathy L. Cooksey
Todd M. Tripp
J. Xavier Prochaska
Benjamin D. Oppenheimer
Sean D. Johnson
Sowgat Muzahid
Rongmon Bordoloi
Jessica K. Werk
Andrew J. Fox
Neal Katz
Martin Wendt
Molly S. Peeples
Joseph Ribaudo
Jason Tumlinson
author_sort Michelle A. Berg
collection DOAJ
description The bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 H i -selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields at z ≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and well-constrained metallicities, allowing us to explore the origins of metal-rich and low-metallicity circumgalactic medium (CGM) at z < 1. Here we present Keck/KCWI and Very Large Telescope/MUSE observations of 11 of these QSO fields (19 pLLSs) that we combine with Hubble Space Telescope/Advanced Camera for Surveys imaging to identify and characterize the absorber-associated galaxies at 0.16 ≲ z ≲ 0.84. We find 23 unique absorber-associated galaxies, with an average of one associated galaxy per absorber. For seven absorbers, all with <10% solar metallicities, we find no associated galaxies with $\mathrm{log}{M}_{\star }\gtrsim 9.0$ within ρ / R _vir and ∣Δ v ∣/ v _esc ≤ 1.5 with respect to the absorber. We do not find any strong correlations between the metallicities or H i column densities of the gas and most of the galaxy properties, except for the stellar mass of the galaxies: the low-metallicity ([X/H] ≤ −1.4) systems have a probability of ${0.39}_{-0.15}^{+0.16}$ for having a host galaxy with $\mathrm{log}{M}_{\star }\geqslant 9.0$ within ρ / R _vir ≤ 1.5, while the higher metallicity absorbers have a probability of ${0.78}_{-0.13}^{+0.10}$ . This implies metal-enriched pLLSs/LLSs at z < 1 are typically associated with the CGM of galaxies with $\mathrm{log}{M}_{\star }\gt 9.0$ , whereas low-metallicity pLLSs/LLSs are found in more diverse locations, with one population arising in the CGM of galaxies and another more broadly distributed in overdense regions of the universe. Using absorbers not associated with galaxies, we estimate the unweighted geometric mean metallicity of the intergalactic medium to be [X/H] ≲ −2.1 at z < 1, which is lower than previously estimated.
first_indexed 2024-03-12T03:16:45Z
format Article
id doaj.art-295ba686bbc144d98994d5c3725e6bff
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-12T03:16:45Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-295ba686bbc144d98994d5c3725e6bff2023-09-03T14:08:30ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-01944110110.3847/1538-4357/acb047The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1Michelle A. Berg0https://orcid.org/0000-0002-8518-6638Nicolas Lehner1https://orcid.org/0000-0001-9158-0829J. Christopher Howk2https://orcid.org/0000-0002-2591-3792John M. O’Meara3https://orcid.org/0000-0002-7893-1054Joop Schaye4https://orcid.org/0000-0002-0668-5560Lorrie A. Straka5https://orcid.org/0000-0001-5892-6760Kathy L. Cooksey6https://orcid.org/0000-0001-5810-5225Todd M. Tripp7https://orcid.org/0000-0002-1218-640XJ. Xavier Prochaska8https://orcid.org/0000-0002-7738-6875Benjamin D. Oppenheimer9https://orcid.org/0000-0002-3391-2116Sean D. Johnson10https://orcid.org/0000-0001-9487-8583Sowgat Muzahid11https://orcid.org/0000-0003-3938-8762Rongmon Bordoloi12https://orcid.org/0000-0002-3120-7173Jessica K. Werk13https://orcid.org/0000-0002-0355-0134Andrew J. Fox14https://orcid.org/0000-0003-0724-4115Neal Katz15https://orcid.org/0000-0002-3097-5381Martin Wendt16https://orcid.org/0000-0001-5020-9994Molly S. Peeples17https://orcid.org/0000-0003-1455-8788Joseph Ribaudo18https://orcid.org/0000-0003-3381-9795Jason Tumlinson19https://orcid.org/0000-0002-7982-412XDepartment of Physics and Astronomy, University of Notre Dame , Notre Dame, IN 46556, USA ; michelle.berg@austin.utexas.edu; Department of Astronomy, The University of Texas at Austin , Austin, TX 78712, USADepartment of Physics and Astronomy, University of Notre Dame , Notre Dame, IN 46556, USA ; michelle.berg@austin.utexas.eduDepartment of Physics and Astronomy, University of Notre Dame , Notre Dame, IN 46556, USA ; michelle.berg@austin.utexas.eduW.M. Keck Observatory 65-1120 Mamalahoa Highway, Kamuela, HI 96743, USALeiden Observatory, Leiden University , P.O. Box 9513, 2300 RA, Leiden, The NetherlandsLeiden Observatory, Leiden University , P.O. Box 9513, 2300 RA, Leiden, The NetherlandsDepartment of Physics & Astronomy, University of Hawai‘i at Hilo , Hilo, HI 96720, USADepartment of Astronomy, University of Massachusetts , 710 North Pleasant Street, Amherst, MA 01003-9305, USADepartment of Astronomy and Astrophysics, University of California , Santa Cruz, CA 95064, USA; Kavli Institute for the Physics and Mathematics of the Universe (WIP) , 5-1-5 Kashiwanoha, Kashiwa, 277-8583, JapanCASA, Department of Astrophysical and Planetary Sciences, University of Colorado , 389 UCB, Boulder, CO 80309, USADepartment of Astronomy, University of Michigan , Ann Arbor, MI 48109, USAIUCAA , Post Bag 04, Ganeshkhind, Pune-411007, India; Leibniz-Institute for Astrophysics Potsdam (AIP) , An der Sternwarte 16, D-14482 Potsdam, GermanyDepartment of Physics, North Carolina State University , 2401 Stinson Drive, Raleigh, NC 27695, USADepartment of Astronomy, University of Washington , Box 351580, Seattle, WA 98195, USAAURA for ESA, Space Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USADepartment of Astronomy, University of Massachusetts , 710 North Pleasant Street, Amherst, MA 01003-9305, USALeibniz-Institute for Astrophysics Potsdam (AIP) , An der Sternwarte 16, D-14482 Potsdam, Germany; Institut für Physik und Astronomie, Universität Potsdam , Karl-Liebknecht-Str 24/25, D-14476 Golm, GermanySpace Telescope Science Institute , Baltimore, MD 21218, USA; Department of Physics and Astronomy, Johns Hopkins University , Baltimore, MD 21218, USADepartment of Engineering and Physics, Providence College , Providence, RI 02918, USASpace Telescope Science Institute , Baltimore, MD 21218, USA; Department of Physics and Astronomy, Johns Hopkins University , Baltimore, MD 21218, USAThe bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 H i -selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields at z ≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and well-constrained metallicities, allowing us to explore the origins of metal-rich and low-metallicity circumgalactic medium (CGM) at z < 1. Here we present Keck/KCWI and Very Large Telescope/MUSE observations of 11 of these QSO fields (19 pLLSs) that we combine with Hubble Space Telescope/Advanced Camera for Surveys imaging to identify and characterize the absorber-associated galaxies at 0.16 ≲ z ≲ 0.84. We find 23 unique absorber-associated galaxies, with an average of one associated galaxy per absorber. For seven absorbers, all with <10% solar metallicities, we find no associated galaxies with $\mathrm{log}{M}_{\star }\gtrsim 9.0$ within ρ / R _vir and ∣Δ v ∣/ v _esc ≤ 1.5 with respect to the absorber. We do not find any strong correlations between the metallicities or H i column densities of the gas and most of the galaxy properties, except for the stellar mass of the galaxies: the low-metallicity ([X/H] ≤ −1.4) systems have a probability of ${0.39}_{-0.15}^{+0.16}$ for having a host galaxy with $\mathrm{log}{M}_{\star }\geqslant 9.0$ within ρ / R _vir ≤ 1.5, while the higher metallicity absorbers have a probability of ${0.78}_{-0.13}^{+0.10}$ . This implies metal-enriched pLLSs/LLSs at z < 1 are typically associated with the CGM of galaxies with $\mathrm{log}{M}_{\star }\gt 9.0$ , whereas low-metallicity pLLSs/LLSs are found in more diverse locations, with one population arising in the CGM of galaxies and another more broadly distributed in overdense regions of the universe. Using absorbers not associated with galaxies, we estimate the unweighted geometric mean metallicity of the intergalactic medium to be [X/H] ≲ −2.1 at z < 1, which is lower than previously estimated.https://doi.org/10.3847/1538-4357/acb047Circumgalactic mediumGalaxy spectroscopyIntergalactic mediumLyman limit systemsMetallicityQuasar absorption line spectroscopy
spellingShingle Michelle A. Berg
Nicolas Lehner
J. Christopher Howk
John M. O’Meara
Joop Schaye
Lorrie A. Straka
Kathy L. Cooksey
Todd M. Tripp
J. Xavier Prochaska
Benjamin D. Oppenheimer
Sean D. Johnson
Sowgat Muzahid
Rongmon Bordoloi
Jessica K. Werk
Andrew J. Fox
Neal Katz
Martin Wendt
Molly S. Peeples
Joseph Ribaudo
Jason Tumlinson
The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1
The Astrophysical Journal
Circumgalactic medium
Galaxy spectroscopy
Intergalactic medium
Lyman limit systems
Metallicity
Quasar absorption line spectroscopy
title The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1
title_full The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1
title_fullStr The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1
title_full_unstemmed The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1
title_short The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1
title_sort bimodal absorption system imaging campaign basic i a dual population of low metallicity absorbers at z 1
topic Circumgalactic medium
Galaxy spectroscopy
Intergalactic medium
Lyman limit systems
Metallicity
Quasar absorption line spectroscopy
url https://doi.org/10.3847/1538-4357/acb047
work_keys_str_mv AT michelleaberg thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT nicolaslehner thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jchristopherhowk thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT johnmomeara thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT joopschaye thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT lorrieastraka thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT kathylcooksey thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT toddmtripp thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jxavierprochaska thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT benjamindoppenheimer thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT seandjohnson thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT sowgatmuzahid thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT rongmonbordoloi thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jessicakwerk thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT andrewjfox thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT nealkatz thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT martinwendt thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT mollyspeeples thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT josephribaudo thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jasontumlinson thebimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT michelleaberg bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT nicolaslehner bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jchristopherhowk bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT johnmomeara bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT joopschaye bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT lorrieastraka bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT kathylcooksey bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT toddmtripp bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jxavierprochaska bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT benjamindoppenheimer bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT seandjohnson bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT sowgatmuzahid bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT rongmonbordoloi bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jessicakwerk bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT andrewjfox bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT nealkatz bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT martinwendt bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT mollyspeeples bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT josephribaudo bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1
AT jasontumlinson bimodalabsorptionsystemimagingcampaignbasiciadualpopulationoflowmetallicityabsorbersatz1