Summary: | Melanin pigmentation patterns are ubiquitous in animals and function in crypsis, physical protection, thermoregulation and signalling. In vertebrates, pigmentation patterns formed over large body regions as well as within appendages (hair/feathers) may be due to the differential distribution of pigment producing cells (melanocytes) and/or regulation of the melanin synthesis pathway. We took advantage of the pigmentation patterns of Japanese quail embryos (pale ventrum and patterned feathers dorsally) to explore the role of genes and their transcripts in regulating the function of the melanocortin-1-receptor (MC1R) via 1. activation: pro-opiomelanocortin (POMC), endoproteases prohormone convertase 1 (PC1) and 2 (PC2), and 2. inhibition-agouti signaling and agouti-related protein (ASIP and AGRP, respectively). Melanocytes are present in all feather follicles at both 8 and 12 days post-fertilisation (E8/E12), so differential deposition of melanocytes is not responsible for pigmentation patterns in embryonic quail. POMC transcripts expressed were a subset of those found in chicken and POMC expression within feather follicles was strong. PC1 was not expressed in feather follicles. PC2 was strongly expressed in all feather follicles at E12. ASIP transcript expression was variable and we report four novel ASIP transcripts. ASIP is strongly expressed in ventral feather follicles, but not dorsally. AGRP expression within feather follicles was weak. These results demonstrate that the pale-bellied quail phenotype probably involves inhibition of MC1R, as found previously. However, quail may require MC1R activation for eumelanogenesis in dorsal feathers which may have important implications for an understanding of colour pattern formation in vertebrates.
|