Distributed Robust Finite-Time Secondary Control for Stand-Alone Microgrids With Time-Varying Communication Delays

In this paper we consider the problem of restoring the voltage for stand-alone inverter-based Microgrids despite the effects of the time-delays arising with the information exchange among the electrical busses. To guarantee that all Distributed Generators (DGs) reach in a finite-time and maintain th...

Full description

Bibliographic Details
Main Authors: Amedeo Andreotti, Bianca Caiazzo, Alberto Petrillo, Stefania Santini
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9406008/
Description
Summary:In this paper we consider the problem of restoring the voltage for stand-alone inverter-based Microgrids despite the effects of the time-delays arising with the information exchange among the electrical busses. To guarantee that all Distributed Generators (DGs) reach in a finite-time and maintain the voltage set-point, as imposed by a virtual DG acting as a leader, we suggest a novel robust networked-based control protocol that is also able to counteract both the time-varying communication delays and natural fluctuations caused by the primary controllers. The finite-time stability of the whole Microgrid is analytically proven by exploiting Lyapunov-Krasovskii theory and finite-time stability mathematical tools. In so doing, delay-dependent stability conditions are derived as a set of Linear Matrix Inequalities (LMIs), whose solution allows the proper tuning of the control gains such that the control objective is achieved with required transient and steady-state performances. A thorough numerical analysis is carried out on the IEEE 14-bus test system. Simulation results corroborate the analytical derivation and reveal both the effectiveness and the robustness of the suggested controller in ensuring the voltage restoration in finite-time in spite of the effects of time-varying communication delays.
ISSN:2169-3536