Particle Fluctuations in Mesoscopic Bose Systems

Particle fluctuations in mesoscopic Bose systems of arbitrary spatial dimensionality are considered. Both ideal Bose gases and interacting Bose systems are studied in the regions above the Bose&#8722;Einstein condensation temperature <inline-formula> <math display="inline">...

Full description

Bibliographic Details
Main Author: Vyacheslav I. Yukalov
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/5/603
_version_ 1798006497493385216
author Vyacheslav I. Yukalov
author_facet Vyacheslav I. Yukalov
author_sort Vyacheslav I. Yukalov
collection DOAJ
description Particle fluctuations in mesoscopic Bose systems of arbitrary spatial dimensionality are considered. Both ideal Bose gases and interacting Bose systems are studied in the regions above the Bose&#8722;Einstein condensation temperature <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, as well as below this temperature. The strength of particle fluctuations defines whether the system is stable or not. Stability conditions depend on the spatial dimensionality <i>d</i> and on the confining dimension <i>D</i> of the system. The consideration shows that mesoscopic systems, experiencing Bose&#8722;Einstein condensation, are stable when: (i) ideal Bose gas is confined in a rectangular box of spatial dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> above <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> and in a box of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&gt;</mo> <mn>4</mn> </mrow> </semantics> </math> </inline-formula> below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>; (ii) ideal Bose gas is confined in a power-law trap of a confining dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> above <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> and of a confining dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>&gt;</mo> <mn>4</mn> </mrow> </semantics> </math> </inline-formula> below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>; (iii) the interacting Bose system is confined in a rectangular box of dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> above <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, while below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, particle interactions stabilize the Bose-condensed system, making it stable for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>; (iv) nonlocal interactions diminish the condensation temperature, as compared with the fluctuations in a system with contact interactions.
first_indexed 2024-04-11T12:55:50Z
format Article
id doaj.art-29702c20293f493886670eeff39fe253
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-11T12:55:50Z
publishDate 2019-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-29702c20293f493886670eeff39fe2532022-12-22T04:23:04ZengMDPI AGSymmetry2073-89942019-05-0111560310.3390/sym11050603sym11050603Particle Fluctuations in Mesoscopic Bose SystemsVyacheslav I. Yukalov0Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, RussiaParticle fluctuations in mesoscopic Bose systems of arbitrary spatial dimensionality are considered. Both ideal Bose gases and interacting Bose systems are studied in the regions above the Bose&#8722;Einstein condensation temperature <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, as well as below this temperature. The strength of particle fluctuations defines whether the system is stable or not. Stability conditions depend on the spatial dimensionality <i>d</i> and on the confining dimension <i>D</i> of the system. The consideration shows that mesoscopic systems, experiencing Bose&#8722;Einstein condensation, are stable when: (i) ideal Bose gas is confined in a rectangular box of spatial dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> above <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> and in a box of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&gt;</mo> <mn>4</mn> </mrow> </semantics> </math> </inline-formula> below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>; (ii) ideal Bose gas is confined in a power-law trap of a confining dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> above <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> and of a confining dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>&gt;</mo> <mn>4</mn> </mrow> </semantics> </math> </inline-formula> below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>; (iii) the interacting Bose system is confined in a rectangular box of dimension <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> above <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, while below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, particle interactions stabilize the Bose-condensed system, making it stable for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>; (iv) nonlocal interactions diminish the condensation temperature, as compared with the fluctuations in a system with contact interactions.https://www.mdpi.com/2073-8994/11/5/603Bose systemsasymptotic symmetry breakingBose–Einstein condensationparticle fluctuationsstability of Bose systems
spellingShingle Vyacheslav I. Yukalov
Particle Fluctuations in Mesoscopic Bose Systems
Symmetry
Bose systems
asymptotic symmetry breaking
Bose–Einstein condensation
particle fluctuations
stability of Bose systems
title Particle Fluctuations in Mesoscopic Bose Systems
title_full Particle Fluctuations in Mesoscopic Bose Systems
title_fullStr Particle Fluctuations in Mesoscopic Bose Systems
title_full_unstemmed Particle Fluctuations in Mesoscopic Bose Systems
title_short Particle Fluctuations in Mesoscopic Bose Systems
title_sort particle fluctuations in mesoscopic bose systems
topic Bose systems
asymptotic symmetry breaking
Bose–Einstein condensation
particle fluctuations
stability of Bose systems
url https://www.mdpi.com/2073-8994/11/5/603
work_keys_str_mv AT vyacheslaviyukalov particlefluctuationsinmesoscopicbosesystems