Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis
Background: Outdoor physical activity (PA) brings important health benefits, but exposure to polluted air increases health risks. This study aimed to quantify the tradeoff of PA under fine particulate matter (PM2.5) air pollution by estimating the optimal PA duration under various pollution levels....
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-07-01
|
Series: | Journal of Sport and Health Science |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2095254620301277 |
_version_ | 1818477522299387904 |
---|---|
author | Ruopeng An Hyojung Kang Lianzhong Cao Xiaoling Xiang |
author_facet | Ruopeng An Hyojung Kang Lianzhong Cao Xiaoling Xiang |
author_sort | Ruopeng An |
collection | DOAJ |
description | Background: Outdoor physical activity (PA) brings important health benefits, but exposure to polluted air increases health risks. This study aimed to quantify the tradeoff of PA under fine particulate matter (PM2.5) air pollution by estimating the optimal PA duration under various pollution levels. Methods: A risk-benefit analysis was performed to estimate the optimal outdoor moderate-intensity PA (MPA) duration under varying PM2.5 concentrations. Results: An inverse nonlinear relationship was identified between optimal MPA duration and background PM2.5 concentration levels. When background PM2.5 concentration increased to 186 µg/m3, the optimal outdoor MPA duration decreased to 2.5 h/week, the minimum level recommended by current PA guidelines. When background PM2.5 concentration further increased to 235 µg/m3, the optimal outdoor MPA duration decreased to 1 h/week. The relationship between optimal MPA duration and background PM2.5 concentration levels was stronger when exercising at a location closer to a source of air pollution. Compared to the general adult population, adults aged 60 years and older had substantially steeper curves—the optimal outdoor MPA duration decreased to 2.5 h/week when background PM2.5 concentration reached 45 µg/m3. Conclusion: The health benefit of outdoor MPA by far outweighs the health risk of PM2.5 pollution for the global average urban background concentration (22 μg/m3). This modeling study examined a single type of air pollutant and suffered from measurement errors and estimation uncertainties. Future research should examine other air pollutants and indoor PA, incorporate short- and mid-term health effects of MPA and air pollution into the risk-benefit analysis, and provide estimates specific for high-risk subgroups. |
first_indexed | 2024-12-10T09:38:46Z |
format | Article |
id | doaj.art-2973375e614f45e0af8286cb6ab8bd93 |
institution | Directory Open Access Journal |
issn | 2095-2546 |
language | English |
last_indexed | 2024-12-10T09:38:46Z |
publishDate | 2022-07-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Sport and Health Science |
spelling | doaj.art-2973375e614f45e0af8286cb6ab8bd932022-12-22T01:54:05ZengElsevierJournal of Sport and Health Science2095-25462022-07-01114537544Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysisRuopeng An0Hyojung Kang1Lianzhong Cao2Xiaoling Xiang3Brown School, Washington University, St. Louis, MO 63130, USADepartment of Kinesiology and Community Health, University of Illinois, Champaign, IL 61820, USASchool of Management and Journalism, Shenyang Sport University, Shenyang 110102, China; Corresponding author.School of Social Work, University of Michigan, Ann Arbor, MI 48109, USABackground: Outdoor physical activity (PA) brings important health benefits, but exposure to polluted air increases health risks. This study aimed to quantify the tradeoff of PA under fine particulate matter (PM2.5) air pollution by estimating the optimal PA duration under various pollution levels. Methods: A risk-benefit analysis was performed to estimate the optimal outdoor moderate-intensity PA (MPA) duration under varying PM2.5 concentrations. Results: An inverse nonlinear relationship was identified between optimal MPA duration and background PM2.5 concentration levels. When background PM2.5 concentration increased to 186 µg/m3, the optimal outdoor MPA duration decreased to 2.5 h/week, the minimum level recommended by current PA guidelines. When background PM2.5 concentration further increased to 235 µg/m3, the optimal outdoor MPA duration decreased to 1 h/week. The relationship between optimal MPA duration and background PM2.5 concentration levels was stronger when exercising at a location closer to a source of air pollution. Compared to the general adult population, adults aged 60 years and older had substantially steeper curves—the optimal outdoor MPA duration decreased to 2.5 h/week when background PM2.5 concentration reached 45 µg/m3. Conclusion: The health benefit of outdoor MPA by far outweighs the health risk of PM2.5 pollution for the global average urban background concentration (22 μg/m3). This modeling study examined a single type of air pollutant and suffered from measurement errors and estimation uncertainties. Future research should examine other air pollutants and indoor PA, incorporate short- and mid-term health effects of MPA and air pollution into the risk-benefit analysis, and provide estimates specific for high-risk subgroups.http://www.sciencedirect.com/science/article/pii/S2095254620301277Air pollutionExercisePhysical activityPM2.5Risk-benefit analysis |
spellingShingle | Ruopeng An Hyojung Kang Lianzhong Cao Xiaoling Xiang Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis Journal of Sport and Health Science Air pollution Exercise Physical activity PM2.5 Risk-benefit analysis |
title | Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis |
title_full | Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis |
title_fullStr | Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis |
title_full_unstemmed | Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis |
title_short | Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis |
title_sort | engagement in outdoor physical activity under ambient fine particulate matter pollution a risk benefit analysis |
topic | Air pollution Exercise Physical activity PM2.5 Risk-benefit analysis |
url | http://www.sciencedirect.com/science/article/pii/S2095254620301277 |
work_keys_str_mv | AT ruopengan engagementinoutdoorphysicalactivityunderambientfineparticulatematterpollutionariskbenefitanalysis AT hyojungkang engagementinoutdoorphysicalactivityunderambientfineparticulatematterpollutionariskbenefitanalysis AT lianzhongcao engagementinoutdoorphysicalactivityunderambientfineparticulatematterpollutionariskbenefitanalysis AT xiaolingxiang engagementinoutdoorphysicalactivityunderambientfineparticulatematterpollutionariskbenefitanalysis |